Browsing by Issue Date, starting with "2015-02"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
- Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fishPublication . Simões, José M.; Barata, Eduardo Nuno; Harris, Rayna M.; O'Connell, Lauren A.; Hofmann, Hans A.; Oliveira, Rui F.Background: Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status. Results: We recorded electro-olfactograms to test the extent to which the olfactory epithelium can discriminate between olfactory information from dominant and subordinate males as well as from pre- and post-spawning females. We then performed a genome-scale gene expression analysis of the olfactory bulb and the olfactory cortex homolog in order to identify the neuromolecular systems involved in processing these social stimuli. Conclusions: Our results show that different olfactory stimuli from conspecifics' have a major impact in the brain transcriptome, with different chemical social cues eliciting specific patterns of gene expression in the brain. These results confirm the role of rapid changes in gene expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to rapid changes in their social environment.
- Genetic diversity across geographical scales in marine coastal ecosystems: Holothuria arguinensis a model speciesPublication . Rodrigues, F.; Valente, Sara; Gonzalez-Wanguemert, MercedesCoastal lagoons are considered one of the most productive areas of our planet harboring a large variety of habitats. Their transitional character, between terrestrial and marine environments, creates a very particular ecosystem with important variations of its environmental conditions. The organisms that are able to survive on these ecosystems frequently experience strong selective pressures and constrictions to gene flowwith marine populations, which could contribute to genetic divergence among populations inhabiting coastal lagoon and marine environments. Therefore, the main aims of this study are to asses the genetic diversity and population structure of Holothuria arguinensis across geographical ranges, to test the hypothesis of coastal lagoons as hotspots of genetic diversity in the Ria Formosa lagoon, and to determine the role of exporting standing genetic variation from the lagoon to open sea and their implications to recent geographical expansion events. To reach these objectives, we investigate the genetic structure of H. arguinensis using two mitochondrial DNA markers (COI and 16S) at different spatial scales: i) small, inside Ria Formosa coastal lagoon, South Portugal; 2) large, including most of the geographical distribution of this species (South and Western Portuguese coast and Canary islands); these results will allow us to compare the genetic diversity of lagoonal and marine populations of H. arguinensis. On this framework, its recent geographical expansion events, recorded by Rodrigues (2012) and González-Wangüemert and Borrero-Pérez (2012), will be analyzed considering the potential contribution from lagoonal genetic pool. Non-significant genetic structure and high haplotypic diversity were found inside the Ria Formosa coastal lagoon. Both genes were unable to detect significant genetic differentiation among lagoonal and marine localities, suggesting a high rate of gene flow. The results supported our hypotheses that coastal lagoons are not only acting as hotspots of genetic diversity, but also contributing for the genetic variability of the species, working as a source of new haplotypes and enhancing adaptation to the high variable conditions. Different genetic patterns of colonization were found on H. arguinensis, but they must be studied more deeply.
- Response of Benthic Foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal)Publication . Martins, Maria Helena; Silva, Frederico; Laut, Lazaro L. M.; Frontalini, Fabrizio; Clemente, Iara M. M. M.; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H. M.; Alveirinho Dias, João M.This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to metals enrichment.
- Components and regulation of nuclear transport processesPublication . Cautain, Bastien; Hill, Richard; de Pedro, Nuria; Link, WolfgangThe spatial separation of DNA replication and gene transcription in the nucleus and protein translation in the cytoplasm is a uniform principle of eukaryotic cells. This compartmentalization imposes a requirement for a transport network of macromolecules to shuttle these components in and out of the nucleus. This nucleo-cytoplasmic transport of macromolecules is critical for both cell physiology and pathology. Consequently, investigating its regulation and disease-associated alterations can reveal novel therapeutic approaches to fight human diseases, such as cancer or viral infection. The characterization of the nuclear pore complex, the identification of transport signals and transport receptors, as well as the characterization of the Ran system (providing the energy source for efficient cargo transport) has greatly facilitated our understanding of the components, mechanisms and regulation of the nucleo-cytoplasmic transport of proteins in our cells. Here we review this knowledge with a specific emphasis on the selection of disease-relevant molecular targets for potential therapeutic intervention.
- Lexical and sublexical orthographic processing: An ERP study with skilled and dyslexic adult readersPublication . Araújo, Susana; Faisca, Luis; Bramao, Ines; Reis, Alexandra; Petersson, Karl MagnusThis ERP study investigated the cognitive nature of the P1-N1 components during orthographic processing. We used an implicit reading task with various types of stimuli involving different amounts of sublexical or lexical orthographic processing (words, pseudohomophones, pseudowords, nonwords, and symbols), and tested average and dyslexic readers. An orthographic regularity effect (pseudo-words-nonwords contrast) was observed in the average but not in the dyslexic group. This suggests an early sensitivity to the dependencies among letters in word-forms that reflect orthographic structure, while the dyslexic brain apparently fails to be appropriately sensitive to these complex features. Moreover, in the adults the N1-response may already reflect lexical access: (i) the N1 was sensitive to the familiar vs. less familiar orthographic sequence contrast; (ii) and early effects of the phonological form (words-pseudohomophones contrast) were also found. Finally, the later N320 component was attenuated in the dyslexics, suggesting suboptimal processing in later stages of phonological analysis. (C) 2014 Elsevier Inc. All rights reserved.
- How integrated are behavioral and endocrine stress response traits? A repeated measures approach to testing the stress-coping style modelPublication . Boulton, Kay; Couto, Elsa; Grimmer, Andrew J.; Earley, Ryan L.; Canario, Adelino V. M.; Wilson, Alastair J.; Walling, Craig A.It is widely expected that physiological and behavioral stress responses will be integrated within divergent stress-coping styles (SCS) and that these may represent opposite ends of a continuously varying reactive-proactive axis. If such a model is valid, then stress response traits should be repeatable and physiological and behavioral responses should also change in an integrated manner along a major axis of among-individual variation. While there is some evidence of association between endocrine and behavioral stress response traits, few studies incorporate repeated observations of both. To test this model, we use a multivariate, repeated measures approach in a captive-bred population of Xiphophorus birchmanni. We quantify among-individual variation in behavioral stress response to an open field trial (OFT) with simulated predator attack (SPA) and measure waterborne steroid hormone levels (cortisol, 11-ketotestosterone) before and after exposure. Under the mild stress stimulus (OFT), (multivariate) behavioral variation among individuals was consistent with a strong axis of personality (shy-bold) or coping style (reactive-proactive) variation. However, behavioral responses to a moderate stressor (SPA) were less repeatable, and robust statistical support for repeatable endocrine state over the full sampling period was limited to 11-ketotestosterone. Although post hoc analysis suggested cortisol expression was repeatable over short time periods, qualitative relationships between behavior and glucocorticoid levels were counter to our a priori expectations. Thus, while our results clearly show among-individual differences in behavioral and endocrine traits associated with stress response, the correlation structure between these is not consistent with a simple proactive-reactive axis of integrated stress-coping style. Additionally, the low repeatability of cortisol suggests caution is warranted if single observations (or indeed repeat measures over short sampling periods) of glucocorticoid traits are used in ecological or evolutionary studies focussed at the individual level.
- High connectivity of the Crocodile Shark between the Atlantic and Southwest Indian Oceans: highlights for conservationPublication . da Silva Ferrette, Bruno Lopes; Mendonca, Fernando Fernandes; Coelho, Rui; Vasconcelos de Oliveira, Paulo Guilherme; Vieira Hazin, Fabio Hissa; Romanov, Evgeny V.; Oliveira, Claudio; Santos, Miguel Neves; Foresti, FaustoAmong the various shark species that are captured as bycatch in commercial fishing operations, the group of pelagic sharks is still one of the least studied and known. Within those, the crocodile shark, Pseudocarcharias kamoharai, a small-sized lamnid shark, is occasionally caught by longline vessels in certain regions of the tropical oceans worldwide. However, the population dynamics of this species, as well as the impact of fishing mortality on its stocks, are still unknown, with the crocodile shark currently one of the least studied of all pelagic sharks. Given this, the present study aimed to assess the population structure of P. kamoharai in several regions of the Atlantic and Indian Oceans using genetic molecular markers. The nucleotide composition of the mitochondrial DNA control region of 255 individuals was analyzed, and 31 haplotypes were found, with an estimated diversity Hd = 0.627, and a nucleotide diversity pi = 0.00167. An analysis of molecular variance (AMOVA) revealed a fixation index phi(ST) = -0.01118, representing an absence of population structure among the sampled regions of the Atlantic Ocean, and between the Atlantic and Indian Oceans. These results show a high degree of gene flow between the studied areas, with a single genetic stock and reduced population variability. In panmictic populations, conservation efforts can be concentrated in more restricted areas, being these representative of the total biodiversity of the species. When necessary, this strategy could be applied to the genetic maintenance of P. kamoharai.
- Carrier multiplication in germanium nanocrystalsPublication . Saeed, Saba; de Weerd, Chris; Stallinga, Peter; Spoor, Frank C. M.; Houtepen, Arjan J.; Siebbeles, Laurens D. A.; Gregorkiewicz, TomCarrier multiplication is demonstrated in a solid-state dispersion of germanium nanocrystals in a silicon-dioxide matrix. This is performed by comparing ultrafast photo-induced absorption transients at different pump photon energies below and above the threshold energy for this process. The average germanium nanocrystal size is approximately 5-6 nm, as inferred from photoluminescence and Raman spectra. A carrier multiplication efficiency of approximately 190% is measured for photo-excitation at 2.8 times the optical bandgap of germanium nanocrystals, deduced from their photoluminescence spectra.
- Response of kelps from different latitudes to consecutive heat shockPublication . Pereira, Tania R.; Engelen, Aschwin H.; Pearson, Gareth; Valero, Myriam; Serrao, Ester A.Although extensive work has focused on kelp responses to constant temperature, little is known about their response to the consecutive temperature shocks they are often exposed to in the shallow subtidal and intertidal pools. Here we characterized the responses of the two southernmost forest-forming kelp species in the Northeast Atlantic, Laminaria ochroleuca De La Pylaie and Saccorhiza polyschides (Lightf.) Batt. to multiple cycles of thermal stress. Individuals from the upper vertical limit of the geographical distribution edges where the two species co-occur forming forests, France and Portugal, were exposed to 4 consecutive cycles of thermal shock simulating a spring tide. A 24 h cycle consisted of culture at 15 degrees C, plus 1 h heat shock at one of five levels (20, 22.5, 25, 27.5 or 30 degrees C). The maximum quantum yield (Fv/Fm) of chlorophyll fluorescence of photosystem 2 (PS2) was used to detect impaired reaction center function, as a proxy for individual fitness costs, during recovery from heat shock. Both species showed resilience to temperatures from 20 to 25 degrees C. While exposure to 27.5 degrees C caused no inhibition to Fv/Fm of S. polyschides, a threshold was met above this temperature and exposure to 30 degrees C caused the death of all individuals. In contrast, L ochroleuca from France was damaged but able to survive 30 degrees C shocks and individuals from Portugal showed complete resilience to this treatment. In both species, blade elongation decreased with increasing temperature, with necrosis surpassing growth at higher temperatures. Resilience to high temperature exposure may confer an advantage to L ochroleuca to colonize intertidal pools on the Portuguese coast, in agreement with the observation that both species recruit in tide pools but only L ochroleuca reach adulthood. Our results indicate that as summer temperatures increase with climate change, the disappearance of S. polyschides from intertidal pools and a decrease in the density of L ochroleuca can be expected. (C) 2014 Elsevier B.V. All rights reserved.
- Involvement of calpains in adult neurogenesis: implications for strokePublication . Machado, Vanessa M.; Morte, Maria I.; Carreira, Bruno P.; Azevedo, Maria M.; Takano, Jiro; Iwata, Nobuhisa; Saido, Takaomi C.; Asmussen, Hannelore; Horwitz, Alan R.; Carvalho, Caetana M.; Araújo, InêsCalpains are ubiquitous proteases involved in cell proliferation, adhesion and motility. In the brain, calpains have been associated with neuronal damage in both acute and neurodegenerative disorders, but their physiological function in the nervous system remains elusive. During brain ischemia, there is a large increase in the levels of intracellular calcium, leading to the activation of calpains. Inhibition of these proteases has been shown to reduce neuronal death in a variety of stroke models. On the other hand, after stroke, neural stem cells (NSC) increase their proliferation and newly formed neuroblasts migrate towards the site of injury. However, the process of forming new neurons after injury is not efficient and finding ways to improve it may help with recovery after lesion. Understanding the role of calpains in the process of neurogenesis may therefore open a new window for the treatment of stroke. We investigated the involvement of calpains in NSC proliferation and neuroblast migration in two highly neurogenic regions in the mouse brain, the dentate gyrus (DG) and the subventricular zone (SVZ). We used mice that lack calpastatin, the endogenous calpain inhibitor, and calpains were also modulated directly, using calpeptin, a pharmacological calpain inhibitor. Calpastatin deletion impaired both NSC proliferation and neuroblast migration. Calpain inhibition increased NSC proliferation, migration speed and migration distance in cells from the SVZ. Overall, our work suggests that calpains are important for neurogenesis and encourages further research on their neurogenic role. Prospective therapies targeting calpain activity may improve the formation of new neurons following stroke, in addition to affording neuroprotection.