Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- RISC-KIT: Resilience-Increasing Strategies for Coasts - toolKITPublication . Van Dongeren, Ap; Ciavola, Paolo; Viavattene, Christophe; de Kleermaeker, Simone; Martinez, Grit; Ferreira, Óscar; Costa, Cristina; McCall, RobertRecent and historic high-impact events have demonstrated the flood risks faced by exposed coastal areas. These risks will increase due to climate change and economic development. This requires a re-evaluation of coastal disaster risk reduction DRR strategies and prevention, mitigation and preparedness PMP measures. To this end, the UN Office for Disaster Risk Reduction formulated the Hyogo Framework for Action, and the EU has issued the Floods Directive. By their nature, neither is specific about the methods to be used to assess coastal risks, particularly those risks resulting from dune and structure overtopping, the non-stationarity of surge and flash flood events, and coastal morphodynamic response. This paper describes a set of open-source and open-access methods, tools and management approaches to fill this gap. A Coastal Risk Assessment Framework will assess coastal risk at a regional scale. Thus critical hotspots can be identified for which an impact-oriented Early Warning System/Decision Support System is developed. This can be applied in dual mode: as a forecast and warning system and as an ex-ante planning tool to evaluate the vulnerability. The tools are demonstrated on case study sites on a range of EU coasts with diverse geomorphic settings, land use, forcing, hazard types and socio-economic, cultural and environmental characteristics. Specific DRR plans will be developed for all sites. A management guide of PMP measures and management approaches is to be developed. The toolkit will benefit forecasting and civil protection agencies, coastal managers, local government, community members, NGOs, the general public and scientists.
- Introduction to RISC-KIT: resilience-increasing strategies for coastsPublication . Van Dongeren, Ap; Ciavola, Paolo; Martinez, Grit; Viavattene, Christophe; Bogaard, Tom; Ferreira, Óscar; Higgins, Ruth; McCall, RobertIn this paper an introduction is provided to the RISC-KIT project’s goals, products and applications, which is the subject of this Special Issue. Subsequent papers provide the details on the developed tools and their application on ten case study sites in Europe.
- Storm impacts along European coastlines. Part 2: lessons learned from the MICORE projectPublication . Ciavola, Paolo; Ferreira, Óscar; Haerens, Piet; Van Koningsveld, Mark; Armaroli, ClaraThis paper describes the MICORE approach to quantify for nine field sites the crucial storm related physical hazards (hydrodynamic as well as morphodynamic) in support of early warning efforts and emergency response. As a first step historical storms that had a significant morphological impact on a representative number of sensitive European coastal stretches were reviewed and analysed in order to understand storm related morphological changes and how often they occur around Europe. Next, an on-line storm prediction system was set up to enable prediction of storm related hydro- and morphodynamic impacts. The system makes use of existing offthe- shelf models as well as a new open-source morphological model. To validate the models at least one year of fieldwork was done at nine pilot sites. The data was safeguarded and stored for future use in an open database that conforms to the OpenEarth protocols. To translate quantitative model results to useful information for Civil Protection agencies the Frame of Reference approach (Van Koningsveld et al., 2005, 2007) was used to derive Storm Impact Indicators (SIIs) for relevant decision makers. The acquired knowledge is expected to be directly transferred to the civil society trough partnerships with end-users at the end of the MICORE project.