Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • On load balancing via switch migration in software-defined networking
    Publication . Correia, Noélia; Al-Tam, Faroq
    Switch-controller assignment is an essential task in multi-controller software-defined networking. Static assignments are not practical because network dynamics are complex and difficult to predetermine. Since network load varies both in space and time, the mapping of switches to controllers should be adaptive to sudden changes in the network. To that end, switch migration plays an important role in maintaining dynamic switch-controller mapping. Migrating switches from overloaded to underloaded controllers brings flexibility and adaptability to the network but, at the same time, deciding which switches should be migrated to which controllers, while maintaining a balanced load in the network, is a challenging task. This work presents a heuristic approach with solution shaking to solve the switch migration problem. Shift and swap moves are incorporated within a search scheme. Every move is evaluated by how much benefititwillgivetoboththeimmigrationandoutmigrationcontrollers.Theexperimentalresultsshowthat theproposedapproachisabletooutweighthestate-of-artapproaches,andimprovetheloadbalancingresults up to≈ 14% in some scenarios when compared to the most recent approach. In addition, the results show that the proposed work is more robust to controller failure than the state-of-art methods.
  • Fractional switch migration in multi-controller software-defined networking
    Publication . Al-Tam, Faroq; Correia, Noélia
    Mapping switches to controllers in multi-controller software-defined networking (SDN) is still a hot research topic. Many factors have to be considered when establishing this mapping. Among them are the load balancing and mapping stability. Load balancing is important to improve resources utilization, and mapping stability reduces the control plane overhead created when exchanging information triggered by new mappings. This article presents a model for dynamic switch-controller mapping to achieve load balancing and minimize the number of new switch-controller assignments. To that end, for load balancing, flows from a switch are allowed to be handled by multiple controllers, and to increase assignment stability, the assignments at time t - 1 are taken into consideration when calculating the assignments at time t. The model is formulated as a convex quadratic programming problem, and the properties and feasibility of this model are mathematically analyzed. In addition, a heuristic algorithm is developed to deal with large-scale networks. The experimental results show the effectiveness of the proposed approach when compared to recent academic work, where the proposed model leads to a slight improvement in the load balancing and increases the stability of the switch-controller assignment by approximate to 91%. (C) 2019 Elsevier B.V. All rights reserved.