Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Optimization of mixed numerology profiles for 5G wireless communication scenariosPublication . Correia, Noélia; Al-Tam, Faroq; Rodriguez, JonathanThe management of 5G resources is a demanding task, requiring proper planning of operating numerology indexes and spectrum allocation according to current traffic needs. In addition, any reconfigurations to adapt to the current traffic pattern should be minimized to reduce signaling overhead. In this article, the pre-planning of numerology profiles is proposed to address this problem, and a mathematical optimization model for their planning is developed. The idea is to explore requirements and impairments usually present in a given wireless communication scenario to build numerology profiles and then adopt one of the profiles according to the current users/traffic pattern. The model allows the optimization of mixed numerologies in future 5G systems under any wireless communication scenario, with specific service requirements and impairments, and under any traffic scenario. Results show that, depending on the granularity of the profiles, the proposed optimization model is able to provide satisfaction levels of 60–100%, whereas a non-optimized approach provides 40–65%, while minimizing the total number of numerology indexes in operation.
- Radio Resource Scheduling with Deep Pointer Networks and Reinforcement LearningPublication . Al-Tam, Faroq; Mazayev, Andriy; Correia, Noélia; Rodriguez, J.This article presents an artificial intelligence (AI) adaptable solution to handle the radio resource scheduling (RRS) task in 5G networks. RRS is one of the core tasks in radio resource management (RRM) and aims to efficiently allocate frequency domain resources to users. The proposed solution is an advantage pointer critic (APC) deep reinforcement learning (DRL) agent. It is built with a deep pointer network architecture and trained by the policy gradient algorithm. The proposed agent is deployed in a system level simulator and the experimental results demonstrate its adaptability to network dynamics and efficiency when compared to baseline algorithms.