Repository logo
 
Loading...
Profile Picture
Person

Gutierrez-Merino, Carlos

Search Results

Now showing 1 - 2 of 2
  • Actin cytoskeleton disruption is an early event upon exposure of cerebellar granule neurons to SIN-1-induced oxidative stress
    Publication . Tiago, Teresa; Silva, D.; Samhan-Arias, A. K.; Aureliano, Manuel; Gutierrez-Merino, Carlos
    In this work we have studied the alterations of the actin cytoskeleton in cultured cerebellar granule neurons during exposure to the peroxynitritereleasing agent SIN-1 for less than 2 hours. Actin polymerization state was assessed by fluorescence microscopy ratio images using double labelling for actin filaments (phallacidin) and monomers (DNase-I). In addition, agonists and antagonists of L-type Ca2+ channels and NMDA receptors were used in order to find out whether these compounds were able to attenuate or potentiate the effects of oxidative stress on the perturbation of the actin cytoskeleton. The results reveal that a flux of peroxynitrite as low as 0.5 ;M/min during 1h is sufficient to promote alterations of actin dynamics leading to partial actin cytoskeleton disruption and suggest that this is an early event linked to cytosolic calcium concentration changes.
  • Early disruption of the actin cytoskeleton in cultured cerebellar granule neurons exposed to 3-morpholinosydnonimine-oxidative stress is linked to alterations of the cytosolic calcium concentration
    Publication . Tiago, Teresa; Marques-da-Silva, Dorinda; Samhan-Arias, A. K.; Aureliano, M.; Gutiérrez-Merino, Carlos
    Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidantinduced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594- DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure ofCGNto a flux of peroxynitrite as low as 0.5–1 M/min during 30 min (achieved with 0.1mMSIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca2+ channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca2+ dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca2+ concentration response to the L-VOCC’s agonist FPL-64176 and to the L-VOCC’s blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca2+ influx through L-VOCC. Combined analysis of cytosolic Ca2+ concentration and G-actin/Factin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.