Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Seagrass connectivity on the West Coast of Africa supports the Hypothesis of Grazer-Mediated Seed DispersalPublication . Tavares, Ana I; Assis, Jorge; Patrício, A. R.; Ferreira, Rogério; Cheikh, Mohamed Ahmed Sidi; Bandeira, Salomão; Regalla, Aissa; Santos, Iderlindo; Potouroglou, Maria; Nicolau, Suzana; Teodosio, Maria; Almada, Carmen; Santos, Rui; Pearson, Gareth; Serrao, EsterPopulation connectivity influences the distribution of genetic diversity and divergence along a species range, as the likelihood of extinction or differentiation increases in isolated populations. However, there is still poor understanding of the processes mediating inter-population dispersal in marine species that are sessile and lack planktonic life stages. One such case is the seagrass species Halodule wrightii, which produces basal seeds, although detached plants can drift. Along the tropical western coast of Africa, this species occurs in distant discontinuous habitats, raising the question of how interpopulation dispersal is mediated. The species is a key source of ecosystem functions including feeding large migratory grazers. This study aims to infer whether genetic differentiation of the seagrass H. wrightii along the western coast of Africa supports a hypothesis of predominant transportation of rafting seagrass by ocean currents, versus the hypothesis of biotic vectors of dispersal. Additional hypotheses were addressed concerning range-wide clonality and genetic diversity, assessed with microsatellite markers on populations of the west coast of Africa from Mauritania to Angola. Population genetic diversity and structure were compared with predictions from biophysical models of dispersal by oceanographic currents. The genetic data revealed low divergence among most populations, in strong contrast with predictions of very low probability of connectivity mediated by currents along the western African coastline. Moderate to high genotypic diversity showed important seed recruitment, but genetic and genotypic diversities were lower at range edges. Populations north and south of the equator were differentiated, and remarkably, so were neighboring equatorial populations despite their proximity. These results reveal independent sources of colonization of meadows in these islands, which are major habitat for migratory grazing green turtles, also supporting the hypothesis of biotically mediated seed transport. The importance of seagrass for conservation of endangered macrofauna has been widely reported; here we report evidence supporting the reciprocal role, that macrofauna protection can also plays a role in long-term survival and reproductive success of seagrass.
- Long range gene flow beyond predictions from oceanographic transport in a tropical marine foundation speciesPublication . Tavares, Ana I; Assis, Jorge; Larkin, Patrick D.; Creed, Joel C.; Magalhães, Karine; Horta, Paulo; Engelen, Aschwin; Cardoso, Noelo; Barbosa, Castro; Pontes, Samuel; Regalla, Aissa; Almada, Carmen; Ferreira, Rogério; Abdoul, Ba Mamadou; Ebaye, Sidina; Bourweiss, Mohammed; dos Santos, Carmen Van-Dúnem; Patrício, Ana R.; Teodosio, Maria; Santos, Rui; Pearson, Gareth; Serrao, Ester AThe transport of passively dispersed organisms across tropical margins remains poorly understood. Hypotheses of oceanographic transportation potential lack testing with large scale empirical data. To address this gap, we used the seagrass species, Halodule wrightii, which is unique in spanning the entire tropical Atlantic. We tested the hypothesis that genetic differentiation estimated across its large-scale biogeographic range can be predicted by simulated oceanographic transport. The alternative hypothesis posits that dispersal is independent of ocean currents, such as transport by grazers. We compared empirical genetic estimates and modelled predictions of dispersal along the distribution of H. wrightii. We genotyped eight microsatellite loci on 19 populations distributed across Atlantic Africa, Gulf of Mexico, Caribbean, Brazil and developed a biophysical model with high-resolution ocean currents. Genetic data revealed low gene flow and highest differentiation between (1) the Gulf of Mexico and two other regions: (2) Caribbean-Brazil and (3) Atlantic Africa. These two were more genetically similar despite separation by an ocean. The biophysical model indicated low or no probability of passive dispersal among populations and did not match the empirical genetic data. The results support the alternative hypothesis of a role for active dispersal vectors like grazers.