Repository logo
 
Loading...
Profile Picture
Person

Taborda Curate, José Francisco

Search Results

Now showing 1 - 2 of 2
  • Sex estimation with the total area of the proximal femur: A densitometric approach
    Publication . Curate, Francisco; Albuquerque, Anabela; Ferreira, Izilda; Cunha, Eugenia
    The estimation of sex is a central step to establish the biological profile of an anonymous skeletal individual. Imaging techniques, including bone densitometry, have been used to evaluate sex in remains incompletely skeletonized. In this paper, we present a technique for sex estimation using the total area (TA) of the proximal femur, a two-dimensional areal measurement determined through densitometry. TA was acquired from a training sample (112 females; 112 males) from the Coimbra Identified Skeletal Collection (University of Coimbra, Portugal). Logistic regression (LR), linear discriminant analysis (LDA), reduce error pruning trees (REPTree), and classification and regression trees (CART) were employed in order to obtain models that could predict sex in unidentified skeletal remains. Under cross-validation, the proposed models correctly estimated sex in 90.2-92.0% of cases (bias ranging from 1.8% to 4.5%). The models were evaluated in an independent test sample (30 females; 30 males) from the 21st Century Identified Skeletal Collection (University of Coimbra, Portugal), with a sex allocation accuracy ranging from 90.0% to 91.7% (bias from 3.3% to 10.0%). Overall, data mining classifiers, especially the REPTree, performed better than the traditional classifiers (LR and LDA), maximizing overall accuracy and minimizing bias. This study emphasizes the significant value of bone densitometry to estimate sex in cadaveric remains in diverse states of preservation and completeness, even human remains with soft tissues. (C) 2017 Elsevier B. V. All rights reserved.
  • Sex determination from the femur in Portuguese populations with classical and machine-learning classifiers
    Publication . Curate, Francisco; Umbelino, Cláudia; Perinha, A.; Nogueira, C.; Silva, A. M.; Cunha, E.
    The assessment of sex is of paramount importance in the establishment of the biological profile of a skeletal individual. Femoral relevance for sex estimation is indisputable, particularly when other exceedingly dimorphic skeletal regions are missing. As such, this study intended to generate population-specific osteometric models for the estimation of sex with the femur and to compare the accuracy of the models obtained through classical and machine-learning classifiers. A set of 15 standard femoral measurements was acquired in a training sample (100 females; 100 males) from the Coimbra Identified Skeletal Collection (University of Coimbra, Portugal) and models for sex classification were produced with logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM), and reduce error pruning trees (REPTree). Under cross-validation, univariable sectioning points generated with REPTree correctly estimated sex in 60.0e87.5% of cases (systematic error ranging from 0.0 to 37.0%), while multivariable models correctly classified sex in 84.0-92.5% of cases (bias from 0.0 to 7.0%). All models were assessed in a holdout sample (24 females; 34 males) from the 21st Century Identified Skeletal Collection (University of Coimbra, Portugal), with an allocation accuracy ranging from 56.9 to 86.2% (bias from 4.4 to 67.0%) in the univariable models, and from 84.5 to 89.7% (bias from 3.7 to 23.3%) in the multivariable models. This study makes available a detailed description of sexual dimorphism in femoral linear dimensions in two Portuguese identified skeletal samples, emphasizing the relevance of the femur for the estimation of sex in skeletal remains in diverse conditions of completeness and preservation. (C) 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.