Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- FOXO transcription factors as therapeutic targets in human diseasesPublication . Orea-Soufi, Alba; Paik, Jihye; Bragança, José; Donlon, Timothy A.; Willcox, Bradley J.; Link, WolfgangForkhead box (FOX)O proteins are transcription factors (TFs) with four members in mammals designated FOXO1, FOXO3, FOXO4, and FOXO6. FOXO TFs play a pivotal role in the cellular adaptation to diverse stress conditions. FOXO proteins act as context-dependent tumor suppressors and their dysregulation has been implicated in several age-related diseases. FOXO3 has been established as a major gene for human longevity. Accordingly, FOXO proteins have emerged as potential targets for the therapeutic development of drugs and geroprotectors. In this review, we provide an overview of the most recent advances in our under-standing of FOXO regulation and function in various pathological conditions. We discuss strategies targeting FOXOs directly or by the modulation of upstream regulators, shedding light on the most promising intervention points. We also reveal the most relevant clinical indications and discuss the potential, trends, and challenges of modulating FOXO activity for therapeutic purposes.
- CITED2 and the modulation of the hypoxic response in cancerPublication . Fernandes, Mónica T; Calado, Sofia; Mendes-Silva, Leonardo; Bragança, JoséCITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.