Repository logo
 

Search Results

Now showing 1 - 1 of 1
  • The time lag between deformation process and seismic activity in El Hierro Island during the eruptive process (2011–2014): a functional phased approach
    Publication . Pérez-Plaza, Sonia; Berrocoso, Manuel; Rosado, Belén; Prates, Gonçalo; Fernández-Palacín, Fernando
    On 10 October 2011, a submarine eruption occurred in El Hierro island. Thus, the eruptive process in the Canary islands was reactivated after 40 years of inactivity. The main objective of this work is to evaluate, using Functional Data Analysis, how the surface deformation phenomenon explains the seismic–volcanic activity in the island. The GNSS-GPS data are from the FRON (GRAFCAN) station, located in Frontera. These data measure, each 4 h, the distance between the FRON station and the reference station LPAL (La Palma island) from August, 2010 to December, 2013. In this study a functional correlation measure is employed to establish the relation between the deformation curve and the curve of cumulative energy released. The period of time analysed has been divided into four phases to avoid the mix of phenomena. For each phase, the correlation measure and the time lag between deformation curve and the curve of cumulative energy released have been estimated. These values show a strong relation between these curves. With respect to time lag period, the only signifcant lag, of about 1 month, occurred in Phase 1, which was after a long period without seismic activity. The later phases had very short, insignifcant, lags. After a long period without seismic and volcanic activity in El Hierro island, the time lag between the deformation process and the beginning of the seismic activity takes approximately 1 month. In a similar situation a method to predict in real time the beginning of the seismic activity is proposed. This method, based on the changes produced in the derivative curves when there is a rapid descent in the deformation curve, could activate a warning system approximately 13 days before the beginning of seismicity.