Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Combined field inoculations of pseudomonas bacteria, arbuscular mycorrhizal fungi, and entomopathogenic nematodes and their effects on wheat performancePublication . Imperiali, Nicola; Chiriboga, Xavier; Schlaeppi, Klaus; Fesselet, Marie; Villacres, Daniela; Jaffuel, Geoffrey; Bender, S. Franz; Dennert, Francesca; Blanco-Perez, Ruben; van der Heijden, Marcel G. A.; Maurhofer, Monika; Mascher, Fabio; Turlings, Ted C. J.; Keel, Christoph J.; Campos-Herrera, RaquelIn agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudornonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by the frit fly, Oscinella frit, a major pest of cereals. Hence, beneficial impacts differed between the beneficial soil organisms and were most evident for plants under biotic stress. Overall, our findings indicate that in wheat production under the test conditions the three beneficial soil organisms can establish nicely and are compatible, but their combined application provides no additional benefits. Further studies are required, also in other cropping systems, to fine-tune the functional interactions among beneficial soil organisms, crops, and the environment.
- Analyzing spatial patterns linked to the ecology of herbivores and their natural enemies in the soilPublication . Campos-Herrera, Raquel; Ali, J. G.; Diaz, B. M.; Duncan, L. W.Modern agricultural systems can benefit from the application of concepts and models from applied ecology. When understood, multitrophic interactions among plants, pests, diseases and their natural enemies can be exploited to increase crop production and reduce undesirable environmental impacts. Although the understanding of subterranean ecology is rudimentary compared to the perspective aboveground, technologies today vastly reduce traditional obstacles to studying cryptic communities. Here we emphasize advantages to integrating as much as possible the use of these methods in order to leverage the information gained from studying communities of soil organisms. PCR-based approaches to identify and quantify species (real time qPCR and next generation sequencing) greatly expand the ability to investigate food web interactions because there is less need for wide taxonomic expertise within research programs. Improved methods to capture and measure volatiles in the soil atmosphere in situ make it possible to detect and study chemical cues that are critical to communication across trophic levels. The application of SADIE to directly assess rather than infer spatial patterns in belowground agroecosystems has improved the ability to characterize relationships between organisms in space and time. We review selected methodology and use of these tools and describe some of the ways they were integrated to study soil food webs in Florida citrus orchards with the goal of developing new biocontrol approaches.