Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- The P600 in Implicit Artificial Grammar LearningPublication . Silva, Susana; Folia, Vasiliki; Hagoort, Peter; Petersson, Karl MagnusThe suitability of the artificial grammar learning (AGL) paradigm to capture relevant aspects of the acquisition of linguistic structures has been empirically tested in a number of EEG studies. Some have shown a syntax-related P600 component, but it has not been ruled out that the AGL P600 effect is a response to surface features (e. g., subsequence familiarity) rather than the underlying syntax structure. Therefore, in this study, we controlled for the surface characteristics of the test sequences (associative chunk strength) and recorded the EEG before (baseline preference classification) and after (preference and grammaticality classification) exposure to a grammar. After exposure, a typical, centroparietal P600 effect was elicited by grammatical violations and not by unfamiliar subsequences, suggesting that the AGL P600 effect signals a response to structural irregularities. Moreover, preference and grammaticality classification showed a qualitatively similar ERP profile, strengthening the idea that the implicit structural mere-exposure paradigm in combination with preference classification is a suitable alternative to the traditional grammaticality classification test.
- Eye-movements in implicit artificial grammar learningPublication . Silva, Susana; Inácio, Filomena; Folia, Vasiliki; Petersson, Karl MagnusArtificial grammar learning (AGL) has been probed with forced-choice behavioral tests (active tests). Recent attempts to probe the outcomes of learning (implicitly acquired knowledge) with eye-movement responses (passive tests) have shown null results. However, these latter studies have not tested for sensitivity effects, for example, increased eye movements on a printed violation. In this study, we tested for sensitivity effects in AGL tests with (Experiment 1) and without (Experiment 2) concurrent active tests (preference- and grammaticality classification) in an eye-tracking experiment. Eye movements discriminated between sequence types in passive tests and more so in active tests. The eye-movement profile did not differ between preference and grammaticality classification, and it resembled sensitivity effects commonly observed in natural syntax processing. Our findings show that the outcomes of implicit structured sequence learning can be characterized in eye tracking. More specifically, whole trial measures (dwell time, number of fixations) showed robust AGL effects, whereas first-pass measures (first-fixation duration) did not. Furthermore, our findings strengthen the link between artificial and natural syntax processing, and they shed light on the factors that determine performance differences in preference and grammaticality classification tests.