Repository logo
 
Loading...
Profile Picture
Person

Horta Jung, Marília

Search Results

Now showing 1 - 2 of 2
  • Unravelling hybridization in Phytophthora using phylogenomics and genome size estimation
    Publication . Van Poucke, Kris; Haegeman, Annelies; Goedefroit, Thomas; Focquet, Fran; Leus, Leen; Horta Jung, Marília; Nave, Corina; Redondo, Miguel A.; Husson, Claude; Kostov, Kaloyan; Lyubenova, Aneta; Christova, Petya; Chandelier, Anne; Slavov, Slavcho; de Cock, Arthur; Bonants, Peter; Werres, Sabine; Palau, Jonàs O.; Marçais, Benoit; Jung, Thomas; Stenlid, Jan; Ruttink, Tom; Heungens, Kurt
    The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is therefore essential for adequate plant protection but this is hampered by the limitations of morphological and traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614 Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid species and discover 16 new hybrid species. Our method was also valuable for species identification at an unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.
  • A survey in natural forest ecosystems of Vietnam reveals high diversity of both new and described Phytophthora taxa including P. ramorum
    Publication . Jung, Thomas; Scanu, Bruno; Brasier, C. M.; Webber, Joan; Milenković, Ivan; Corcobado, Tamara; Tomšovský, Michal; Pánek, Matěj; Bakonyi, József; Maia, Cristiana; Bačová, Aneta; Raco, Milica; Rees, Helen; Pérez-Sierra, Ana; Horta Jung, Marília
    In 2016 and 2017, surveys of Phytophthora diversity were performed in 25 natural and semi-natural forest stands and 16 rivers in temperate and subtropical montane and tropical lowland regions of Vietnam. Using baiting assays from soil samples and rivers and direct isolations from naturally fallen leaves, 13 described species, five informally designated taxa and 21 previously unknown taxa of Phytophthora were isolated from 58 of the 91 soil samples (63.7%) taken from the rhizosphere of 52 of the 64 woody plant species sampled (81.3%) in 20 forest stands (83.7%), and from all rivers: P. capensis, P. citricola VII, VIII, IX, X and XI, P. sp. botryosa-like 2, P. sp. meadii-like 1 and 2, P. sp. tropicalis-like 2 and P. sp. multivesiculata-like 1 from Phytophthora major phylogenetic Clade 2; P. castaneae and P. heveae from Clade 5; P. chlamydospora, P. gregata, P. sp. bitahaiensis-like and P. sp. sylvatica-like 1, 2 and 3 from Clade 6; P. cinnamomi (Pc), P. parvispora, P. attenuata, P. sp. attenuata-like 1, 2 and 3 and P. ×heterohybrida from Clade 7; P. drechsleri, P. pseudocryptogea, P. ramorum (Pr) and P. sp. kelmania from Clade 8, P. macrochlamydospora, P. sp. ×insolita-like, P. sp. ×kunnunara-like, P. sp. ×virginiana-like s.l. and three new taxa, P. sp. quininea-like, P. sp. ×Grenada 3-like and P. sp. ×Peru 4-like, from Clade 9; and P. sp. gallica-like 1 and 2 from Clade 10. The A1 and A2 mating types of both Pc and Pr co-occurred. The A2 mating type of Pc was associated with severe dieback of montane forests in northern Vietnam. Most other Phytophthora species, including Pr, were not associated with obvious disease symptoms. It is concluded that (1) Vietnam is within the center of origin of most Phytophthora taxa found including Pc and Pr, and (2) Phytophthora clades 2, 5, 6, 7, 8, 9, and 10 are native to Indochina.