Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • A one-class generative adversarial detection framework for multifunctional fault diagnoses
    Publication . Pu, Ziqiang; Cabrera, Diego; Bai, Yun; Li, Chuan
    In this article, fault diagnosis is of great significance for system health maintenance. For real applications, diagnosis accuracy suffers from unbalanced data patterns, where normal data are usually abundant than anomaly ones, leading to tremendous diagnosis obstacles. Therefore, it is challenging to use only normal data for fault diagnosis under this imbalanced condition. In addition, a single fault diagnosis model can only conduct one fault diagnosis task in most of cases. Accordingly, a one-class generative adversarial detection (OCGAD) framework based on semisupervised learning is proposed to learn one-class latent knowledge for dealing with multiple semisupervised fault diagnosis tasks, i.e., fault detection using only normal knowledge learning, novelty detection from unknown conditional data, and fault classification with unlabeled data. A bi-directional generative adversarial network (Bi-GAN) is first trained with only normal data. A one-class support vector machine is then established using features exacted by Bi-GAN from signals acquired from an attitude sensor for multifunctional fault detection. The presented OCGAD model is validated using an industrial robot with experiments of three fault detection tasks. The results demonstrate that the present model has good performance for dealing with multiple semisupervised diagnosis problems.
  • Generative adversarial one-shot diagnosis of transmission faults for industrial robots
    Publication . Pu, Ziqiang; Cabrera, Diego; Bai, Yun; Li, Chuan
    Transmission systems of industrial robots are prone to get failures due to harsh operating environments. Fault diagnosis is of great significance for realizing safe operations for industrial robots. However, it is difficult to obtain faulty data in real applications. To migrate this issue, a generative adversarial one-shot diagnosis (GAOSD) approach is proposed to diagnose robot transmission faults with only one sample per faulty pattern. Signals representing kinematical characteristics were acquired by an attitude sensor. A bidirectional generative adversarial network (Bi-GAN) was then trained using healthy signals. Inspired by way of human thinking, the trained encoder in Bi-GAN was taken out to perform information abstraction for all signals. Finally, the abstracted signals were sent to a random forest for the one-shot diagnosis. The performance of the present technique was evaluated on an industrial robot experimental setup. Experimental results show that the proposed GAOSD has promising performance on the fault diagnosis of robot transmission systems.