Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 4 of 4
  • A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L.
    Publication . Franch, Rafaella; Louro, Bruno; Tsalavouta, Matina; Chatziplis, Dimitris; Tsigenopoulos, C.; Sarropoulou, Elena; Antonello, Jenny; Magoulas, Andonis; Mylonas, Constantinos C.; Babbucci, Massimiliano; Patarnello, T.; Power, Deborah; Kotoulas, Georgios; Bargelloni, Luca
    The gilthead sea bream (Sparus aurata L.) is a marine fish of great importance for fisheries and aquaculture. It has also a peculiar sex-determination system, being a protandrous hermaphrodite. Here we report the construction of a first-generation genetic linkage map for S. aurata, based on 204 microsatellite markers. Twenty-six linkage groups (LG) were found. The total map length was 1241.9 cM. The ratio between sex-specific map lengths was 1:1.2 (male:female). Comparison with a preliminary radiation hybrid (RH) map reveals a good concordance, as all markers located in a single LG are located in a single RH group, except for Ad-25 and CId-31. Comparison with the Tetraodon nigroviridis genome revealed a considerable number of evolutionary conserved regions (ECRs) between the two species. The mean size of ECRs was 182 bp (sequence identity 60–90%). Forty-one ECRs have a known chromosomal location in the pufferfish genome. Despite the limited number of anchoring points, significant syntenic relationships were found. The linkage map presented here provides a robust comparative framework for QTL analysis in S. aurata and is a step toward the identification of genetic loci involved both in the determination of economically important traits and in the individual timing of sex reversal.
  • Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish
    Publication . Pauletto, Marianna; Manousaki, Tereza; Ferraresso, Serena; Babbucci, Massimiliano; Tsakogiannis, Alexandros; Louro, Bruno; Vitulo, Nicola; Quoc, Viet Ha; Carraro, Roberta; Bertotto, Daniela; Franch, Rafaella; Maroso, Francesco; Aslam, Muhammad L.; Sonesson, Anna K.; Simionati, Barbara; Malacrida, Giorgio; Cestaro, Alessandro; Caberlotto, Stefano; Sarropoulou, Elena; Mylonas, Costantinos C.; Power, Deborah; Patarnello, Tomaso; Canario, Adelino; Tsigenopoulos, Costas; Bargelloni, Luca
    Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.
  • European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation
    Publication . Tine, Mbaye; Kuhl, Heiner; Gagnaire, Pierre-Alexandre; Louro, Bruno; Desmarais, Erick; Martins, Rute S. T.; Hecht, Jochen; Knaust, Florian; Belkhir, Khalid; Klages, Sven; Dieterich, Roland; Stueber, Kurt; Piferrer, Francesc; Guinand, Bruno; Bierne, Nicolas; Volckaert, Filip A. M.; Bargelloni, Luca; Power, Deborah M.; Bonhomme, Francois; Canario, Adelino V. M.; Reinhardt, Richard
    The European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation.
  • A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis
    Publication . Sarropoulou, Elena; Franch, Rafaella; Louro, Bruno; Power, Deborah; Bargelloni, Luca; Magoulas, Antonio; Senger, Fabrice; Kotoulas, Georgios; Geisler, Robert
    Background: Comparative teleost studies are of great interest since they are important in aquaculture and in evolutionary issues. Comparing genomes of fully sequenced model fish species with those of farmed fish species through comparative mapping offers shortcuts for quantitative trait loci (QTL) detections and for studying genome evolution through the identification of regions of conserved synteny in teleosts. Here a comparative mapping study is presented by radiation hybrid (RH) mapping genes of the gilthead sea bream Sparus aurata, a non-model teleost fish of commercial and evolutionary interest, as it represents the worldwide distributed species-rich family of Sparidae. Results: An additional 74 microsatellite markers and 428 gene-based markers appropriate for comparative mapping studies were mapped on the existing RH map of Sparus aurata. The anchoring of the RH map to the genetic linkage map resulted in 24 groups matching the karyotype of Sparus aurata. Homologous sequences to Tetraodon were identified for 301 of the gene-based markers positioned on the RH map of Sparus aurata. Comparison between Sparus aurata RH groups and Tetraodon chromosomes (karyotype of Tetraodon consists of 21 chromosomes) in this study reveals an unambiguous one-to-one relationship suggesting that three Tetraodon chromosomes correspond to six Sparus aurata radiation hybrid groups. The exploitation of this conserved synteny relationship is furthermore demonstrated by in silico mapping of gilthead sea bream expressed sequence tags (EST) that give a significant similarity hit to Tetraodon. Conclusion: The addition of primarily gene-based markers increased substantially the density of the existing RH map and facilitated comparative analysis. The anchoring of this gene-based radiation hybrid map to the genome maps of model species broadened the pool of candidate genes that mainly control growth, disease resistance, sex determination and reversal, reproduction as well as environmental tolerance in this species, all traits of great importance for QTL mapping and marker assisted selection. Furthermore this comparative mapping approach will facilitate to give insights into chromosome evolution and into the genetic make up of the gilthead sea bream.