Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Co-limitation of phytoplankton by N and P in a shallow coastal lagoon (Ria Formosa): implications for eutrophication evaluation
    Publication . Domingues, Rita B.; Nogueira, Patricia; Barbosa, Ana B.
    The Ria Formosa coastal lagoon is a highly productive shallow ecosystem in southern Portugal, subjected to nutrient inputs from anthropogenic and natural sources. Nutrients are major abiotic drivers of phytoplankton in this system, but their effects on phytoplankton assemblages and the occurrence of nutrient limitation are still poorly understood. The main goal of this study was, thus, to evaluate the occurrence, type, and effects of nutrient limitation on phytoplankton community and specific functional groups in the Ria Formosa coastal lagoon. We conducted nutrient enrichment experiments with factorial additions of nitrogen (N) and phosphorus (P) using natural phytoplankton assemblages from distinct locations in the Ria Formosa, throughout a yearly cycle. Phytoplankton composition and abundance were evaluated using inverted and epifluorescence microscopies, and spectrophotometric methods were used for biomass. Limitation was defined as higher phytoplankton growth following enrichment with a particular nutrient in relation to the non-enriched control. The most common type of phytoplankton limitation was simultaneous co-limitation by N and P; diatoms, as r-strategists, were the most frequently limited group. Single N and P limitation, and serial P limitation were also observed, as well as negative responses to nutrient enrichment. Group-specific responses to nutrient enrichment were not reflected in the relative abundance of phytoplankton groups within the whole assemblage, due to the numerical dominance of pico-sized groups (cyanobacteria and eukaryotic picophytoplankton). Ambient nutrient ratios and concentrations did not predict phytoplankton nutrient limitation, given the different nutrient utilisation traits among phytoplankton functional groups. Therefore, nutrient ratios should not be used as indicators of nutrient limitation in eutrophication assessment.
  • Duration, but not bottle volume, affects Phytoplankton Community Structure and growth rates in microcosm experiments
    Publication . B. Domingues, Rita; Mosley, Benjamin A.; Nogueira, Patricia; Maia, Inês Beatriz; B. Barbosa, Ana
    It is generally assumed that the larger the bottle volume, the longer the duration of phytoplankton microcosm experiments. We hypothesize that volume and duration are independent, as volume does not regulate the extension of the exponential growth phase. We conducted two microcosm experiments using 1, 2, and 8 L bottles, inoculated with phytoplankton collected in the Ria Formosa lagoon (SE Portugal) and incubated for 1, 2, 4, and 8 days. Phytoplankton net growth rates were estimated using chlorophyll a concentration and cell abundance, determined with epifluorescence and inverted microscopy. Results show that the experimental duration significantly affected net growth rates, independently of volume, with decreasing net growth rates with time. Regarding volume, we found significant, but weak, differences in net growth rates, and significant two-way interactions only for the larger-sized cells. No significant differences in net growth rates across the different volumes were detected for the smaller, most abundant taxa and for the whole assemblage. We conclude that duration, not volume, is the main factor to consider in microcosm experiments, and it should allow the measurement of responses during the exponential growth phase, which can be detected through daily sampling throughout the duration of the experiment.