Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Groundwater response to climate variability in Mediterranean type climate zones with comparisons of California (USA) and Portugal
    Publication . Malmgren, Katherine; Neves, Maria; Gurdak, Jason J.; Costa, Luis; Monteiro, José
    Aquifers are a fundamental source of freshwater, yet they are particularly vulnerable in coastal regions with Mediterranean type climate, due to both climatic and anthropogenic pressures. This comparative study examines the interrelationships between ocean-atmosphere teleconnections, groundwater levels and precipitation in coastal aquifers of California (USA) and Portugal. Piezometric and climate indices (1989-2019) are analyzed using singular spectral analysis and wavelet transform methods. Singular spectral analysis identifies signals consistent with the six dominant climate patterns: the Pacific Decadal Oscillation (PDO), the El Nino-Southern Oscillation (ENSO), and the Pacific/North American Oscillation (PNA) in California, and the North Atlantic Oscillation (NAO), the Eastern Atlantic Oscillation (EA) and the Scandinavian Pattern (SCAND) in Portugal. Lower-frequency oscillations have a greater influence on hydrologic patterns, with PDO (52.75%) and NAO (46.25%) on average accounting for the largest amount of groundwater level variability. Wavelet coherences show nonstationary covariability between climate patterns and groundwater levels in distinct period bands: 4-8 years for PDO, 2-4 years for ENSO, 1-2 years for PNA, 5-8 years for NAO, 2-4 years for EA and 2-8 years for SCAND. Wavelet coherence patterns also show that coupled climate patterns (NAO+ EA- and paired PDO and ENSO phases) are associated with major drought periods in both the Mediterranean climate zones.
  • The impact of atmospheric teleconnections on the coastal aquifers of Ria Formosa (Algarve, Portugal)
    Publication . C. Neves, Maria; Costa, Luis; Hugman, Rui; P. Monteiro, J.
    Fluctuations in groundwater level in the Ria Formosa coastal aquifers, southern Portugal, owe 80% of the variability to climate-induced oscillations. Wavelet coherences computed between hydraulic heads and the North Atlantic Oscillation (NAO) and East Atlantic (EA) atmospheric teleconnections show nonstationary and spatially varying relationships. The NAO is the most important teleconnection and the main driver of long-term variability, inducing cycle periods of 6-10 years. The NAO fingerprint is ubiquitous and it accounts for nearly 50% of the total variance of groundwater levels. The influence of EA emerges coupled to NAO and is mainly associated with oscillations in the 2-4-year band. These cycles contribute to less than 5% of the variance in groundwater levels and are more evident further from the coast, in the northern part of the system near the main recharge area. Inversely, the power of the annual cycle increases towards the shoreline. The weight of the annual cycle (related to direct recharge) is greatest in the Campina de Faro aquifer, where it is responsible for 20-50% of the variance of piezometric levels. There, signals linked to atmospheric teleconnections (related to regional recharge) are low-pass filtered and have periods >8 years. This behavior (lack of power in the 2-8-year band) emphasizes the vulnerability of coastal groundwater levels to multi-year droughts, particularly in the already stressed Quinta do Lago region, where hydraulic heads are persistently below sea level.