Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Response of a multi-domain continental margin to compression: study from seismic reflection-refraction and numerical modelling in the Tagus Abyssal PlainPublication . Neves, Maria; Terrinha, P.; Afilhado, A.; Moulin, Anne M; Matias, L.; Rosas, F.The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling. (C) 2008 Elsevier B.V. All rights reserved.
- Easter microplate dynamicsPublication . Neves, MC; Searle, RC; Bott, MHP[1] We use two-dimensional elastic finite element analysis, supplemented by strength estimates, to investigate the driving mechanism of the Easter microplate. Modeled stresses are compared with the stress indicators compiled from earthquake focal mechanisms and structural observations. The objective is to constrain the tectonic forces that govern the Easter microplate rotation and to test the microplate driving hypothesis proposed by Schouten et al. [1993]. We infer that the mantle basal drag cannot drive the microplate rotation but opposes it, and that the asthenospheric viscosity is no more than about 1 x 10(18) Pa s. At most, the basal drag comprises 20% of the force resisting microplate rotation. The outward pull of the main plates can drive the rotation by shear drag applied along the northern and southern boundaries of the microplate. However, we propose an additional driving force which arises from the strong variation of the ridge resistance force along the east and west rifts, so that the main driving torques come from the pull of the major plates acting across the narrowing and slowing rifts. This requires the strength to increase substantially toward the rift tips due to thickening of the brittle lithosphere as the spreading rate slows.