Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Photoinduced reactivity in a Dispiro-1,2,4-trioxolane: Adamantane ring expansion and first direct observation of the long-lived triplet diradical intermediatesPublication . M Brás, Elisa; Cabral, Lília; Amado, Patrícia; Abe, Manabu; Fausto, Rui; Cristiano, Maria De LurdesDispiro-1,2,4-trioxolane, 1, an ozonide with efficient and broad antiparasitic activity, was synthesized and investigated using matrix isolation FTIR and EPR spectroscopies together with both B3LYP/6-311++G(3df, 3dp) and M06- 2X/6-311++G-(3df,3dp) theoretical methods. Irradiations (lambda >= 290 nm) of the matrix isolated 1 (Ar or N-2) afforded exclusively 4-oxahomoadamantan-5-one, 4, and 1,4-cyclohexanedione, 5. These results suggested that the reaction proceeded via a dioxygen-centered diradical intermediate, formed upon homolytic cleavage of the labile peroxide bond, which regioselectively isomerized to form the more stable (secondary carbon-centered)/oxygen-centered diradical. In situ EPR measurements during the photolysis of 1 deposited in a MeTHF-matrix led to the detection of signals corresponding to two triplet species, one of which was short-lived while the other proved to be persistent at 10 K. These observations strongly support the proposed mechanism for the photogeneration of 4 and 5, which involves intramolecular rearrangement of the intermediate diradical species 2 to afford the triplet diradical 3.
- Synthesis and Antileishmanial Activity of 1,2,4,5-Tetraoxanes against Leishmania donovaniPublication . Cabral, Lília; Pomel, Sébastien; Cojean, Sandrine; Amado, Patrícia; Loiseau, Philippe M.; Cristiano, Maria De LurdesA chemically diverse range of novel tetraoxanes was synthesized and evaluated in vitro against intramacrophage amastigote forms of Leishmania donovani. All 15 tested tetraoxanes displayed activity, with IC50 values ranging from 2 to 45 µm. The most active tetraoxane, compound LC140, exhibited an IC50 value of 2.52 ± 0.65 µm on L. donovani intramacrophage amastigotes, with a selectivity index of 13.5. This compound reduced the liver parasite burden of L. donovani-infected mice by 37% after an intraperitoneal treatment at 10 mg/kg/day for five consecutive days, whereas miltefosine, an antileishmanial drug in use, reduced it by 66%. These results provide a relevant basis for the development of further tetraoxanes as effective, safe, and cheap drugs against leishmaniasis.
- 1,2,4-Trioxolane and 1,2,4,5-Tetraoxane endoperoxides against old-world Leishmania parasites: in vitro activity and mode of actionPublication . Mendes, Andreia; Armada, Ana; Cabral, Lília; Amado, Patrícia; Campino, Lenea; Cristiano, Maria de Lurdes; Cortes, SofiaLeishmaniasis remains one of the ten Neglected Tropical Diseases with significant morbidity and mortality in humans. Current treatment of visceral leishmaniasis is difficult due to a lack of effective, non-toxic, and non-extensive medications. This study aimed to evaluate the selectivity of 12 synthetic endoperoxides (1,2,4-trioxolanes; 1,2,4,5-tetraoxanes) and uncover their biochemical effects on Leishmania parasites responsible for visceral leishmaniasis. The compounds were screened for in vitro activity against L. infantum and L. donovani and for cytotoxicity in two monocytic cell lines (J774A.1 and THP-1) using the methyl thiazol tetrazolium assay. Reactive oxygen species formation, apoptosis, and mitochondrial impairment were measured by flow cytometry. The compounds exhibited fair to moderate anti-proliferative activity against promastigotes of the 2 Leishmania species, with IC50 values ranging from 13.0 ± 1.7 µM to 793.0 ± 37.2 µM. Tetraoxanes LC132 and LC138 demonstrated good leishmanicidal activity on L. infantum amastigotes (IC50 13.2 ± 5.2 and 23.9 ± 2.7 µM) with low cytotoxicity in mammalian cells (SIs 22.1 and 118.6), indicating selectivity towards the parasite. Furthermore, LC138 was able to induce late apoptosis and dose-dependent oxidative stress without affecting mithocondria. Compounds LC132 and LC138 can be further explored as potential antileishmanial chemotypes.