Loading...
8 results
Search Results
Now showing 1 - 8 of 8
- Application of semi-circular double-skin facades in auditoriums in winter conditionsPublication . Conceição, Maria Inês; EZE, Conceicão; Lúcio, Maria Manuela Jacinto Do Rosário; Gomes, João; Awbi, HazimThe DSF (double-skin facade) system is an important element in building design and is used in adjacent spaces to control the inlet solar radiation, heat the air, reduce energy consumption, decrease the acoustics levels, and produce photovoltaic energy, among other improvements. The DSF system can, for example, be used in winter conditions to heat the air, which is then transported to non-adjacent spaces to improve the thermal comfort level and the indoor air quality that the occupants are subjected to. Smooth DSF systems, which are a focus in the literature, are subjected to higher solar radiation levels at a specific hour of the day. The semi-circular DSF system used in this work, which was built from a group of smooth DSF systems with different orientations, guarantees the reception of the highest incident solar radiation throughout the entire day. This work presents a numerical study of a new DSF system, called the semi-circular DSF. The DSF system consists of a set of 25 smooth DSFs with different orientations, each one consisting of an outer glazed surface and an inner surface provided by the outer facade of the auditorium, both separated by an air channel. In this work, the influence of the radius of the semi-circular DSF system and the opening angle of the DSF system on the thermal response of the auditorium was analysed. Thus, six auditoriums were considered: two sets of three auditoriums with radii of 5 m and 15 m, with each of the auditoriums having a different DSF opening angle (45°, 90°, and 180°). It was found that the greater the radius of the semi-circular DSF and the opening angle of the DSF system, the greater the area of its glazed surface and, consequently, the greater the availability of solar heating power. Therefore, during the occupation period, only the set of auditoriums with the largest semi-circular DSF radius managed to present acceptable levels of thermal comfort, which were verified from mid-morning until late afternoon. As for the opening angle of the DSF system, the influence was not very significant, although slight improvements in thermal comfort were noted when the value of this angle was reduced (see Case F as an example) due to the corresponding decrease in the volume of indoor air to be heated. In all auditoriums (see Case A to Case F), it was verified that the indoor air quality was acceptable for the occupants, so the airflow rate was adequately promoted by the ventilation system.
- Energy production of solar DSF for ceiling-mounted localized air distribution systems in a virtual classroomPublication . Conceição, Eusébio; Gomes, João; Lúcio, Maria Manuela; Awbi, HazimThis paper presents an application of energy production in a solar Double Skin Facade (DSF) used in a Heating, Ventilation and Air-Conditioning (HVAC) system for a ceiling-mounted localized air distribution systems in a virtual classroom. In this numerical work, a virtual classroom, an inlet ceiling-mounted localized air distribution system, an exhaust ventilation system, and a DSF system are considered. The numerical simulations consider an integral building thermal response (BTR) and a coupling of an integral human thermal-physiology response (HTR) and differential computational fluid dynamics (CFD). The BTR numerical model calculates, among other parameters, the DSF indoor air temperature and energy production. The HTR numerical model calculates, among other parameters, the human thermal comfort. The CFD numerical model, among other parameters, calculates the indoor air quality. In this study which is performed for winter conditions, the energy produced in the DSF is used for driving the HVAC system. Six different airflow rates are used. The air temperature and energy production in the DSF are also evaluated. The influence of the airflow rate on the HVAC system performance is evaluated by the Air Distribution Index for mid-morning and mid-afternoon conditions. The results show that energy production reduces when the airflow increases and the operating point can be selected using the acceptable levels of thermal comfort and air quality levels or using the maximum Air Distribution Index value. In this study, the application of the thermal comfort and air quality levels criteria demonstrates that the HVAC system uses an optimum airflow rate.
- Production of thermal energy in university building greenhouses in cold climate conditionsPublication . Conceição, Eusébio; Gomes, João; Lúcio, Maria Manuela Jacinto Do Rosário; Awbi, HazimThe present work focuses on the production of thermal energy in University building greenhouses in cold climate conditions. The building model uses a system of energy and mass balance integral equations, which are solved by the Runge–Kutta–Felberg method with error control. This numerical study is about the thermal behaviour of a university building with complex topology, in winter and transient conditions. The thermal comfort of the occupants, using the Predicted Mean Vote index, and the indoor air quality, using the carbon dioxide concentration, are evaluated. This building has 319 compartments distributed by four floors and it is equipped with one internal greenhouse in the third floor. This greenhouse is located on the south facing facade and the heated air in this space will be transported to compartments located on the north facing façade. The spaces subject to the influence of the heated air coming from the greenhouse improve the level of thermal comfort of its occupants. The level of indoor air quality in occupied spaces is acceptable according to international standards.
- Comparative study of a clean technology based on DSF use in occupied buildings for improving comfort in winterPublication . EZE, Conceicão; Gomes, João; Lúcio, Maria Manuela Jacinto Do Rosário; Conceição, Maria Inês; Awbi, HazimThis paper presents a comparative study of a clean technology based on a DSF (double skin facade) used in winter conditions in the occupied buildings comfort improvement, namely the thermal comfort and air quality. The performance of a solar DSF system, the building’s thermal response, the internal thermal comfort and the internal air quality are evaluated. In this study, a DSF system, an air transport system and a HVAC (heating, ventilating and air conditioning) system based on mixing ventilation are used. The study considers a virtual chamber occupied by eight persons and equipped, in the outside environment, by three DSFs. A new horary pre-programming control methodology is developed and applied when the airflow rate is constant and the number of DSFs to operate is variable, when the airflow rate is variable and the number of DSFs to operate is constant and when the airflow rate is variable and the number of DSFs to operate is variable. This work uses a numerical model that simulates the integral building thermal behavior and an integral human thermal response. The internal air, provided by a mixing ventilating system, is warmed using the DSF system. The air temperature inside the DSF system and the virtual chamber, the thermal comfort level using the PMV index, the internal air quality using the carbon dioxide concentration and the uncomfortable hours are calculated for winter conditions. The results obtained show that the energy produced in the DSF, using solar radiation, guarantees acceptable thermal comfort conditions in the morning and in the afternoon. The indoor air quality obtained at the breathing level is acceptable. It is found that the airflow rate to be used is more decisive than the DSF operating methodology. However, when a solution is chosen that combines a ventilation rate with the number of DSF to operate, both variables throughout the day can obtain simultaneously better results for indoor air quality and thermal comfort according to the standards.
- Energy production in solar collectors in a university building used to improve the internal thermal conditions in winter conditionsPublication . Conceição, Eusébio; Gomes, João; Lúcio, Maria Manuela Jacinto Do Rosário; Awbi, HazimIn this numerical study the energy production in solar collectors in a University building used to improve the internal thermal conditions is made. Passive and active solutions, using external solar collector and internal thermo-convectors, are used. The numerical simulation, in transient conditions, is done for a winter typical day with clean sky. This numerical study was carried out using a software that simulates the Building Dynamic Response with complex topology in transient conditions. The software evaluates the human thermal comfort and indoor air quality levels that the occupants are subjected, Heated Ventilation and Air Conditioned energy consumption, indoor thermal variables and other parameters. The university building has 107 compartments and is located in a Mediterranean-type environment. External solar water collectors, placed above the building’s roof, and internal thermo-convectors of water/air type, using mixing ventilation, are used as passive and active strategies, respectively. The thermal comfort level, using the Predicted Mean Vote index, and the indoor air quality, using the carbon dioxide concentration, are evaluated. The results show that in winter conditions the solar collectors improve the thermal comfort conditions of the occupants. The indoor air quality, in all ventilated spaces, is also guaranteed.
- Development of a double Skin Facade system applied in a virtual occupied chamberPublication . Conceição, Eusébio; Gomes, João; Lúcio, Maria Manuela Jacinto Do Rosário; Awbi, HazimIn this study a system constituted by seven double skin facades (DSF), three equipped with venetian blinds and four not equipped with venetian blinds, applied in a virtual chamber, is developed. The project will be carried out in winter conditions, using a numerical model, in transient conditions, and based on energy and mass balance linear integral equations. The energy balance linear integral equations are used to calculate the air temperature inside the DSF and the virtual chamber, the temperature on the venetian blind, the temperature on the inner and outer glass, and the temperature distribution in the surrounding structure of the DSF and virtual chamber. These equations consider the convection, conduction, and radiation phenomena. The heat transfer by convection is calculated by natural, forced, and mixed convection, with dimensionless coefficients. In the radiative exchanges, the incident solar radiation, the absorbed solar radiation, and the transmitted solar radiation are considered. The mass balance linear integral equations are used to calculate the water mass concentration and the contaminants mass concentration. These equations consider the convection and the diffusion phenomena. In this numerical work seven cases studies and three occupation levels are simulated. In each case the influence of the ventilation airflow and the occupation level is analyzed. The total number of thermal and indoor air quality uncomfortable hours are used to evaluate the DSF performance. In accordance with the obtained results, in general, the indoor air quality is acceptable; however, when the number of occupants in the virtual chamber increases, the Predicted Mean Vote index value increases. When the airflow rate increases the total of Uncomfortable Hours decreases and, after a certain value of the airflow rate, it increases. The airflow rate associated with the minimum value of total Uncomfortable Hours increases when the number of occupants increases. The energy production decreases when the airflow increases and the production of energy is higher in DSF with venetian blinds system than in DSF without venetian blinds system.
- Application of horizontal confluents jets in a school virtual chamberPublication . Conceição, Eusébio; Conceição, Mª Inês; Gomes, João; Lúcio, Maria Manuela Jacinto Do Rosário; Awbi, HazimThe study presented in this work is performed in a virtual chamber, similar to an existing experimental chamber, with dimensions of 4.50×2.55×2.50 m3. The chamber, occupied with twelve virtual manikins, is equipped with six tables, twelve chairs, one exhaust system and one inlet system, based in confluents jets system. In the exhaust system are considered six air ducts, located above the head level, connected to the ceiling area. The inlet system, based in four vertical ducts, with 0.15 m diameter, located on the corners of the chamber, are equipped with consecutive holes, that promotes horizontal jets near the wall. The results demonstrate that when the airflow rate increases the air quality number increases, the thermal comfort number decreases and the ADI increases slightly. The predicted percentage of dissatisfied index values show that the thermal comfort level is acceptable, the dioxide carbon concentration values show that the indoor air quality is near the acceptable value and the Draught Risk is acceptable
- Modelling of indoor air quality and thermal comfort in passive buildings subjected to external warm climate conditionsPublication . Conceição, Eusébio; Gomes, João; Conceição, Maria Inês; Conceição, Margarida; Lúcio, Maria Manuela Jacinto do Rosário; Awbi, HazimAir renewal rate is an important parameter for both indoor air quality and thermal comfort. However, to improve indoor thermal comfort, the air renewal rate to be used, in general, will depend on the outdoor air temperature values. This article presents the modelling of indoor air quality and thermal comfort for occupants of a passive building subject to a climate with warm conditions. The ventilation and shading strategies implemented for the interior spaces are then considered, as well as the use of an underground space for storing cooled air. The indoor air quality is evaluated using the carbon dioxide concentration, and thermal comfort is evaluated using the Predicted Mean Vote index. The geometry of the passive building, with complex topology, is generated using a numerical model. The simulation is performed by Building Thermal Response software, considering the building's geometry and materials, ventilation, and occupancy, among others. The building studied is a circular auditorium. The auditorium is divided into four semi-circular auditoriums and a central circular space, with vertical glazed windows and horizontal shading devices on its entire outer surface. Typical summer conditions existing in a Mediterranean-type environment were considered. In this work, two cases were simulated: in Case 1, the occupation is verified in the central space and the four semi-circular auditoriums and all spaces are considered as one; in Case 2, the occupation is verified only in each semi-circular auditorium and each one works independently. For both cases, three strategies were applied: A, without shading and geothermal devices; B, with a geothermal device and without a shading device; and C, with both shading and geothermal devices. The airflow rate contributes to improving indoor air quality throughout the day and thermal comfort for occupants, especially in the morning. The geothermal and shading devices improve the thermal comfort level, mainly in the afternoon.