Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- μCT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relativesPublication . Hughes, Nathan; R. Oliveira, Hugo; Fradgley, Nick; Corke, Fiona M K; Cockram, James; Doonan, John H; Nibau, CandidaWheat and barley are two of the founder crops domesticated in the Fertile Crescent, and currently represent crops of major economic importance in temperate regions. Due to impacts on yield, quality and end-use, grain morphometric traits remain an important goal for modern breeding programmes and are believed to have been selected for by human populations. To directly and accurately assess the three-dimensional (3D) characteristics of grains, we combine X-ray microcomputed tomography (μCT) imaging techniques with bespoke image analysis tools and mathematical modelling to investigate how grain size and shape vary across wild and domesticated wheat and barley. We find that grain depth and, to a lesser extent, width are major drivers of shape change and that these traits are still relatively plastic in modern bread wheat varieties. Significant changes in grain depth are also observed to be associated with differences in ploidy. Finally, we present a model that can accurately predict the wild or domesticated status of a grain from a given taxa based on the relationship between three morphometric parameters (length, width and depth) and suggest its general applicability to both archaeological identification studies and breeding programmes.
- Identification of quantitative trait loci relating to flowering time, flag leaf and awn characteristics in a novel triticum dicoccum mapping populationPublication . Wright, Tally I.C.; Burnett, Angela C.; Griffiths, Howard; Kadner, Maxime; Powell, James S.; Oliveira, Hugo R.; Leigh, Fiona J.Tetraploid landraces of wheat harbour genetic diversity that could be introgressed into modern bread wheat with the aid of marker-assisted selection to address the genetic diversity bottleneck in the breeding genepool. A novel bi-parental Triticum turgidum ssp. dicoccum Schrank mapping population was created from a cross between two landrace accessions differing for multiple physiological traits. The population was phenotyped for traits hypothesised to be proxies for characteristics associated with improved photosynthesis or drought tolerance, including flowering time, awn length, flag leaf length and width, and stomatal and trichome density. The mapping individuals and parents were genotyped with the 35K Wheat Breeders' single nucleotide polymorphism (SNP) array. A genetic linkage map was constructed from 104 F4 individuals, consisting of 2066 SNPs with a total length of 3295 cM and an average spacing of 1.6 cM. Using the population, 10 quantitative trait loci (QTLs) for five traits were identified in two years of trials. Three consistent QTLs were identified over both trials for awn length, flowering time and flag leaf width, on chromosomes 4A, 7B and 5B, respectively. The awn length and flowering time QTLs correspond with the major loci Hd and Vrn-B3, respectively. The identified marker-trait associations could be developed for marker-assisted selection, to aid the introgression of diversity from a tetraploid source into modern wheat for potential physiological trait improvement.