Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean)
    Publication . Betzler, C.; Eberli, G. P.; Luedmann, T.; Reolid, J.; Kroon, D.; Reijmer, J. J. G.; Swart, P. K.; Wright, J.; Young, J. R.; Alvarez-Zarikian, C.; Alonso-Garcia, Montserrat; Bialik, O. M.; Blattler, C. L.; Guo, J. A.; Haffen, S.; Horozal, Senay; Inoue, Mayuri; Jovane, L.; Lanci, L.; Laya, J. C.; Mee, A. L. Hui; Nakakuni, M.; Nath, B. N.; Niino, K.; Petruny, L. M.; Pratiwi, S. D.; Slagle, A. L.; Sloss, C. R.; Su, X.; Yao, Z.
    International Ocean Discovery Program (IODP) Expedition 359 cored sediments from eight borehole locations in the carbonate platform of the Maldives in the Indian Ocean. The expedition set out to unravel the timing of Neogene climate changes, in particular the evolution of the South Asian monsoon and fluctuations of the sea level. The timing of these changes are assessed by dating resultant sedimentary alterations that mark stratigraphic turning points in the Neogene Maldives platform system. The first four turning points during the early and middle Miocene are related to sea-level changes. These are reliably recorded in the stratigraphy of the carbonate sequences in which sequence boundaries provide the ages of the sea-level lowstand. Phases of aggradational platform growth give precise age brackets of long-term sea-level high stands during the early Miocene and the early to middle Miocene Climate Optimum that is dated here between 17 to 15.1 Ma. The subsequent middle Miocene cooling coincident with the eastern Antarctic ice sheet expansion resulted in a long-term lowering of sea level that is reflected by a progradational platform growth. The change in platform architecture from aggradation to progradation marks this turning point at 15.1 Ma.& para;& para;An abrupt change in sedimentation pattern is recognized across the entire archipelago at a sequence boundary dated as 12.9-13 Ma. At this turning point, the platform sedimentation switched to a current-controlled mode when the monsoon-wind-driven circulation started in the Indian Ocean. The similar age of the onset of drift deposition from monsoon-wind-driven circulation across the entire archipelago indicates an abrupt onset of monsoon winds in the Indian Ocean. Ten unconformities dissect the drift sequences, attesting changes in current strength or direction that are likely caused by the combined product of changes in the monsoon-wind intensity and sea level fluctuations in the last 13 Ma. A major shift in the drift packages is dated with 3.8 Ma that coincides with the end of stepwise platform drowning and a reduction of the oxygen minimum zone in the Inner Sea.& para;& para;The strata of the Maldives platform provides a detailed record of the extrinsic controlling factors on carbonate platform growth through time. This potential of carbonate platforms for dating the Neogene climate and current changes has been exploited in other platforms drilled by the Ocean Drilling Program. For example, Great Bahama Bank, the Queensland Plateau, and the platforms on the Marion Plateau show similar histories with sediment architectures driven by sea level in their early history (early to middle Miocene) replaced by current-driven drowning or partial drowning during their later history (Late Miocene). In all three platform systems, the influence of currents on sedimentations is reported between 11 and 13 Ma.
  • Sea-level and monsoonal control on the Maldives carbonate platform (Indian Ocean) over the last 1.3 million years
    Publication . Alonso-Garcia, Montserrat; Reolid, Jesus; Jimenez-Espejo, Francisco J.; Bialik, Or M.; Alvarez Zarikian, Carlos A.; Laya, Juan Carlos; Carrasquiera, Igor; Jovane, Luigi; Reijmer, John J. G.; Eberli, Gregor P.; Betzler, Christian
    The Maldives Archipelago (Indian Ocean), composed of two rows of atolls that enclose an inner sea, offers an excellent study site to explore the forcings of carbonate production at platforms. Glacial-interglacial sea-level changes have been claimed to be the main factor controlling the carbonate platform factories; however, climatic factors may also have an impact. In this work we used geochemical compositional records, obtained by X-ray fluorescence (XRF) core-scanning from the International Ocean Discovery Program (IODP) Site U1467 in the Maldives Inner Sea, to analyze the orbitally driven fluctuations on the carbonate production and export from the neritic environment into the Maldives Inner Sea over the last 1.3 million years.High Sr aragonite-rich carbonates (HSAC) from neritic settings were deposited in the Maldives Inner Sea during sea-level highstand intervals, increasing the Sr / Ca values. In contrast, low Sr / Ca values are observed coincident with sea-level lowstand periods, suggesting that large areas of the atolls were exposed or unable to grow, and therefore, there was a demise in the carbonate production and sediment export to the Maldives Inner Sea. However, comparison of the Sr / Ca values and the sea-level reconstructions for different interglacial periods before and after the mid-Brunhes event (MBE, similar to 430 ka ) indicates that sea level is not the only factor controlling the production of HSAC during sea-level highstands. The study of monsoon and primary productivity proxies ( Fe -normalized, Fe / K , and Br -normalized records) from the same site suggests that the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the carbonate production at the atolls. Moreover, Marine Isotope Stage 11 stands out as a period with high sea level and extraordinary carbonate production in the Maldives platform. This outstanding carbonate production in the Maldives atolls (and in other low-latitude carbonate platforms) probably contributed to the mid-Brunhes dissolution event through a strong shelf-to-basin fractionation of carbonate deposition.