Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Sensory evaluation and spectra evolution of two kiwifruit cultivars during cold storagePublication . Afonso, Andreia M.; Guerra, Rui; Cruz, Sandra; Antunes, Maria D.Kiwifruit consumption has increased due to its rich nutritional properties. Although ‘Hayward’ continues to be the main cultivar, others, such as yellow fleshed ‘Jintao’, are of increasing interest. The objective of this research was to evaluate the acceptability and storage performance of these two cultivars. Sensory evaluation of green ‘Hayward’ and yellow ‘Jintao’ kiwifruit were performed along cold storage for three seasons/years to follow the organoleptic characteristics through ripening, as well as the acquisition of their spectra by Vis-NIR. For ‘Jintao’ were performed two sensory evaluations per year at 2.5- and 4.5-months’ storage and for ‘Hayward’ at 2.5-, 4.5- and 5.5-months’ storage. The nonparametric Mann–Whitney test and Kruskal–Wallis ANOVA were performed to test the significant differences between the mean ranks among the storage time. A non-metric multidimensional scaling plot method using the ALSCAL algorithm in a seven-point Likert scale was applied to determine the relationships in the data, and a new approach using the receiver operating characteristic (ROC) analysis was tested. The last revealed that, for both cultivars, sweetness, acidity and texture were the variables with better scores for General flavor. Aroma was also important on ‘Jintao’. A strong correlation between soluble solids content (SSC) and reflectance was found for both cultivars, with the 635–780 nm range being the most important. Regarding firmness, a good correlation with reflectance spectra was observed, particularly in ‘Hayward’ kiwifruit. Based on these results, Vis-NIR can be an objective alternative to explore for determination of the optimum eating-ripe stage.
- Ripening assessment of ‘Ortanique’ (Citrus reticulata Blanco x Citrus sinensis (L) Osbeck) on tree by SW-NIR reflectance spectroscopy-based calibration modelsPublication . Pires, Rosa; Guerra, Rui Manuel Farinha das Neves; Cruz, Sandra; Antunes, MDC; Brazio, António; Afonso, Andreia M.; Daniel, Mariana; Panagopoulos, Thomas; Gonçalves, Isabel; Cavaco, Ana M.The aim of this study was the non-destructive assessment of ‘Ortanique’ (Citrus reticulata Blanco x Citrus sinensis (L) Osbeck) ripening, based on the prediction of internal quality attributes (IQA) by short-wave near-infrared reflectance spectroscopy (SW-NIRS) calibration models. Spectra from fruit of 50 trees located in two different orchards, were acquired on tree using a customized portable visible near-infrared (vis-NIR) system. Partial least squares (PLS) was used to build the various IQA calibration models. The models were tested through internal validation (IV) and external validation (EV). Generally, the IV results were always superior to those of EV: regarding IV, a high regression coefficient (R2) and low root mean square error of prediction (RMSEP) were achieved, revealing a good predictive performance for juice pH (R2 = 0.80; RMSEP = 0.10; SDR = 2.23), soluble solids content (SSC) (R2 = 0.79; RMSEP = 0.75 %; SDR = 2.27), titratable acidity (TA) (R2 = 0.73; RMSEP = 0.24 % citric acid; SDR = 1.94) and the maturation index (MI) (R2 = 0.80; RMSEP = 1.38; SDR = 2.2). The best EV predictions were obtained for TA (R2 = 0.69; RMSEP = 0.38 % citric acid; SDR = 1.24), and MI (R2 = 0.69; RMSEP = 2.07; SDR = 1.49). Calibration models for glucose, fructose and sucrose showed medium-coarse predictions for both validation strategies. A detailed investigation of MI models was performed, to understand the causes of their poor EV results. In the context of EV, model updating strategies were explored by using some validation samples to improve the calibration model. The methods of bias correction and spiking were tested, showing a clear improvement in the predictions.
- 1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pearPublication . Gago, Custódia; Guerreiro, Adriana; Cruz, Sandra; Martins, Nuno; Cabrita, Maria João; Miguel, Maria; Faleiro, Maria Leonor; Antunes, Maria DulceThe effects of coating 'Rocha' pear with alginate-based nanoemulsions enriched with lemongrass essential oil (LG) was evaluated and compared to the usual 1-MCP treatment. Fruit were treated with 1-MCP (312 nL L-1) or coated with nanoemulsions: sodium alginate 2 % (w/w) + lemongrass essential oil 1.25 % (w/w) (LG 1.25 %) or lemongrass essential oil 2.5 % (w/w) (LG 2.5 %). Then, fruit were stored at 0 degrees C and 90-95 % relative humidity (RH), for eight months. Fruit samples were collected at harvest and after two, four, six and eight months of cold storage, and then transferred to shelf-life at 22 degrees C. Upon removal and after 7 d shelf-life, fruit symptoms of superficial scald and internal browning, ethylene production, color CIE (L*, hue), firmness, soluble solids content (SSC), titratable acidity (TA), weight loss, electrolytic leakage (EL), antioxidant activity and fatty acids of pear peel, microbial growth and sensory analyses were evaluated. Coatings and 1-MCP reduced fruit color evolution and preserved better firmness than control. Coatings and 1-MCP did not affect SSC and TA. Treatments did not influence the sensory quality. Microbial growth was within the safety limits in all treatments. Treatments with 1-MCP and LG-nanoemulsions were similarly efficient to reduce superficial scald, nevertheless the LG-nanoemulsions showed higher internal disorders after 8 months of storage and LG 2.5 % had higher decay at the same period, similar to control. 1-MCP treated fruit had the lowest softening rate after shelf-life up to 4 months and LG 2.5 % showed higher weight loss. Also, ethylene production was higher in control and LG 1.25 % up to 6 months plus shelf-life, while after 8 months there was no difference among treatments. This study suggests that 1-MCP is the most efficient for preserving quality of 'Rocha' pear for 8 months, while up to 6 months the best effect is obtained with LG 1.25 % nanocoatings.