Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- A global dataset of demosponge distribution recordsPublication . Vafeiadou, Ariadni; Fragkopoulou, Eliza; Assis, JorgeBiodiversity information in the form of species occurrence records is key for monitoring and predicting current and fu- ture biodiversity patterns, as well as for guiding conserva- tion and management strategies. However, the reliability and accuracy of this information are frequently undermined by taxonomic and spatial errors. Additionally, biodiversity in- formation facilities often share data in diverse incompatible formats, precluding seamless integration and interoperabil- ity. We provide a comprehensive quality-controlled dataset of occurrence records of the Class Demospongiae, which comprises 81% of the entire Porifera phylum. Demosponges are ecologically significant as they structure rich habitats and play a key role in nutrient cycling within marine ben- thic communities. The dataset aggregates occurrence records from multiple sources, employs dereplication and taxonomic curation techniques, and is flagged for potentially incorrect records based on expert knowledge regarding each species’ bathymetric and geographic distributions. It yields 417,626 records of 1,816 accepted demosponge species (of which 321,660 records of 1,495 species are flagged as potentially correct), which are provided under the FAIR principle of Find- ability, Accessibility, Interoperability and Reusability in the Darwin Core Standard. This dataset constitutes the most up- to-date baseline for studying demosponge diversity at the global scale, enabling researchers to examine biodiversity patterns (e.g., species richness and endemicity), and forecast
- Weak biodiversity connectivity in the European network of no-take marine protected areasPublication . Assis, J.; Fragkopoulou, Eliza; Serrão, Ester A.; e Costa, Horta; Gandra, Miguel; Abecasis, DavidThe need for international cooperation in marine resource management and conservation has been reflected in the increasing number of agreements aiming for effective and well-connected networks of Marine Protected Areas (MPAs). However, the extent to which individual MPAs are connected remains mostly unknown. Here, we use a biophysical model tuned with empirical data on species dispersal ecology to predict connectivity of a vast spectrum of biodiversity in the European network of marine reserves (i.e., no-take MPAs). Our results highlight the correlation between empirical propagule duration data and connectivity potential and show weak network connectivity and strong isolation for major ecological groups, resulting from the lack of direct connectivity corridors between reserves over vast regions. The particularly high isolation predicted for ecosystemstructuring species (e.g., corals, sponges, macroalgae and seagrass) might potentially undermine biodiversity conservation efforts if local retention is insufficient and unmanaged populations are at risk. Isolation might also be problematic for populations' persistence in the light of climate change and expected species range shifts. Our findings provide novel insights for management directives, highlighting the location of regions requiring additional marine reserves to function as stepping-stone connectivity corridors. (C) 2021 Elsevier B.V. All rights reserved.
- Range map data of marine ecosystem structuring species under global climate changePublication . Gouvêa, Lidiane; Fragkopoulou, Eliza; Legrand, Térence; Serrao, Ester; Assis, JorgeData on contemporary and future geographical distributions of marine species are crucial for guiding conservation and management policies in face of climate change. However, available distributional patterns have overlooked key ecosystem structuring species, despite their numerous ecological and socioeconomic services. Future range estimates are mostly available for few species at regional scales, and often rely on the outdated Representative Concentration Pathway scenarios of climate change, hindering global biodiversity estimates within the framework of current international climate policies. Here, we provide range maps for 980 marine structuring species of seagrasses, kelps, fucoids, and cold-water corals under present-day conditions (from 2010 to 2020) and future scenarios (from 2090 to 2100) spanning from low carbon emission scenarios aligned with the goals of the Paris Agreement (Shared Socioeconomic Pathway 1-1.9), to higher emissions under reduced mitigation strategies (SSP3-7.0 and SSP5-8.5). These models were developed using state-ofthe-art and advanced machine learning algorithms linking the most comprehensive and quality-controlled datasets of occurrence records with high-resolution, biologically relevant predictor variables. By integrating the best aspects of species distribution modelling over key ecosystem structuring species, our datasets hold the potential to enhance the ability to inform strategic and effective conservation policy, ultimately supporting the resilience of ocean ecosystems.