Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- A spectrally efficient transmission scheme for signals with large bandwidthPublication . Silva, Paulo; Dinis, RuiIn this paper we consider single-carrier with frequency-domain equalization (SC-FDE) schemes where the transmission bandwidth is above the symbol rate. To allow high spectral efficiencies, several channels share the same bandwidth. Since the co-channel interference (CCI) levels can be very high, we propose iterative FDE receivers where we jointly detect all users sharing the same channel. Our performance results show that we can have excellent performances, even with several users sharing the same channel. In fact, we can have the maximum theoretical spectral efficiency even with signals that have bandwidth substantially above the symbol rate.
- Frequency- domain multiuser detection for highly overloaded DS-CDMA systemsPublication . Silva, Paulo; Dinis, RuiA DS-CDMA (Direct Sequence-Coded Division Multiple Access) system has maximum spectral efficiency if the system is fully loaded (i.e., the number of users is equal to the spreading factor) and we employ signals with bandwidth equal to the chip rate. However, due to implementation constraints we need to employ signals with higher bandwidth, decreasing the system’s spectral efficiency. In this paper we consider prefixassisted DS-CDMA systems with bandwidth that can be significantly above the chip rate. To allow high spectral efficiency we consider highly overloaded systems where the number of users can be twice the spreading factor or even more. To cope with the strong interference levels we present an iterative frequencydomain receiver that takes full advantage of the total bandwidth of the transmitted signals. Our performance results show that the proposed receiver can have excellent performance, even for highly overloaded systems. Moreover, the overall system performance can be close to the maximum theoretical spectral efficiency, even with transmitted signals that have bandwidth significantly above the chip rate.