Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Valorization of cork stoppers, coffee-grounds and walnut shells in the development and characterization of Pectin-Based composite films: Physical, barrier, antioxidant, genotoxic, and biodegradation properties
    Publication . Cruz, Rui; Rainer, Bernhard; Wagner, Isabella; Krauter, Victoria; Janalíková, Magda; Vicente, António A.; Vieira, Jorge M.
    The development of sustainable materials from the valorization of waste is a good alternative to reducing the negative environmental impact of plastic packaging. The objectives of this study were to develop and characterize pectin-based composite films incorporated with cork or cork with either coffee grounds or walnut shells, as well as to test the films’ genotoxicity, antioxidant properties, and biodegradation capacity in soil and seawater. The addition of cork, coffee grounds, or walnut shells modified the films’ characteristics. The results showed that those films were thicker (0.487 ± 0.014 mm to 0.572 ± 0.014 mm), more opaque (around 100%), darker (L* = 25.30 ± 0.78 to 33.93 ± 0.84), and had a higher total phenolic content (3.17 ± 0.01 mg GA/g to 4.24 ± 0.02 mg GA/g). On the other hand, the films incorporated only with cork showed higher values of elongation at break (32.24 ± 1.88% to 36.30 ± 3.25%) but lower tensile strength (0.91 ± 0.19 MPa to 1.09 ± 0.08 MPa). All the films presented more heterogeneous and rougher microstructures than the pectin film. This study also revealed that the developed films do not contain DNA-reactive substances and that they are biodegradable in soil and seawater. These positive properties could subsequently make the developed films an interesting eco-friendly food packaging solution that contributes to the valorization of organic waste and by-products, thus promoting the circular economy and reducing the environmental impact of plastic materials.
  • Development and characterization of pectin films with Salicornia ramosissima: biodegradation in soil and seawater
    Publication . Pereira, Daniela G. M.; Vieira, Jorge M.; Vicente, António A.; Cruz, Rui
    Pectin films were developed by incorporating a halophyte plant Salicornia ramosissima (dry powder from stem parts) to modify the film’s properties. The films’ physicomechanical properties, Fourier-transform infrared spectroscopy (FTIR), and microstructure, as well as their biodegradation capacity in soil and seawater, were evaluated. The inclusion of S. ramosissima significantly increased the thickness (0.25 ± 0.01 mm; control 0.18 ± 0.01 mm), color parameters a* (4.96 ± 0.30; control 3.29 ± 0.16) and b* (28.62 ± 0.51; control 12.74 ± 0.75), water vapor permeability (1.62 × 10−9 ± 1.09 × 10−10 (g/m·s·Pa); control 1.24 × 10−9 ± 6.58 × 10−11 (g/m·s·Pa)), water solubility (50.50 ± 5.00%; control 11.56 ± 5.56%), and elongation at break (5.89 ± 0.29%; control 3.91 ± 0.62%). On the other hand, L* (48.84 ± 1.60), tensile strength (0.13 ± 0.02 MPa), and Young’s modulus (0.01 ± 0 MPa) presented lower values compared with the control (L* 81.20 ± 1.60; 4.19 ± 0.82 MPa; 0.93 ± 0.12 MPa), while the moisture content varied between 30% and 45%, for the film with S. ramosissima and the control film, respectively. The addition of S. ramosissima led to opaque films with relatively heterogeneous microstructures. The films showed also good biodegradation capacity—after 21 days in soil (around 90%), and after 30 days in seawater (fully fragmented). These results show that pectin films with S. ramosissima may have great potential to be used in the future as an eco-friendly food packaging material.