Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Improvement of the cryopreservation protocols for the dusky grouper, Epinephelus marginatus
    Publication . F Riesco, Marta; Raposo de Magalhães, Cláudia; Engrola, Sofia; Martinez-Paramo, Sonia; Mira, Sara; Cunha, Maria Emilia; Cabrita, Elsa
    The dusky grouper, Epinephelus marginatus, is a potential species for aquaculture production although the limited number of males kept in captivity has been the cause of some constraints in its production. Sperm cryopreservation emerged as a solution for this problem. However, spermatozoa can be severely affected by freezing/thawing processes and poor sperm quality is a limiting factor in reproduction success. The present study aimed at evaluating two main aspects in the design of a cryopreservation protocol-extender additives (taurine, glucose, cholesterol, BSA) and sperm containers (0.5 mL straws, 2 mL cryovials and 5 mL macrotubes). Sperm quality was assessed through the evaluation of the percentage of motile cells, viable cells, DNA fragmentation, lipid peroxidation and apoptosis. Some specific techniques, such as Caspase 3/7 detection, which provides information on membrane integrity and cell death, detecting early and late apoptotic and necrotic events, were required to establish an optimized cryopreservation protocol for this species. Taurine was the most suitable cryopreservation additive in terms of viable cells and cholesterol presented the highest percentage of necrotic cells in this study. Caspase 3/7 assay enabled us to detect necrotic damage induced by cryopreservation. Statement of relevance: The development of reproductive tools in dusky grouper, a potential species for aquaculture production, emerges as important tool to decrease the number of wild males maintained in captivity. A cryopreservation protocol was previously described for this species although several constraints in terms of sperm quality were detected. Our work provided new evidences that cryopreservation protocols can be improved through the addition of certain additives and use of appropriate sperm containers. Specific sperm analysis was crucial to identify and establish the most suitable conditions for breeders management and species conservation purposes. (C) 2016 Elsevier B.V. All rights reserved.
  • Marine green macroalgae: a source of natural compounds with mineralogenic and antioxidant activities
    Publication . Surget, Gwladys; Roberto, Vania Palma; Le Lann, Klervi; Mira, Sara; Guerard, Fabienne; Laizé, Vincent; Poupart, Nathalie; Leonor Cancela, M.; Stiger-Pouvreau, Valerie
    Marine macroalgae represent a valuable natural resource for bioactive phytochemicals with promising applications in therapeutics, although they remain largely under-exploited. In this work, the potential of two marine green macroalgae (Cladophora rupestris and Codium fragile) as a source of bioactive phenolic compounds was explored, and antioxidant, mineralogenic, and osteogenic activities were evaluated. For each species, a crude hydroalcoholic extract (CE) was prepared by solid/liquid extraction and fractionated by liquid/liquid purification into an ethyl acetate fraction (EAF) enriched in phenolic compounds and an aqueous fraction (AF). Antioxidant activity, assessed through radical scavenging activity and reducing power assay, was increased in EAF fraction of both species and closely related to the phenolic content in each fraction. Mineralogenic activity, assessed through extracellular matrix mineralization of a fish bone-derived cell line, was induced by EAF fractions (up to 600 % for C. rupestris EAF). Quantitative analysis of operculum formation in zebrafish larvae stained with alizarin red S further confirmed the osteogenic potential of EAF fractions in vivo, with an increase of more than 1.5-fold for both C. fragile and C. rupestris fractions, similar to vitamin D (control). Our results demonstrated a positive correlation between phenolic fractions and biological activity, suggesting that phenolic compounds extracted from marine green macroalgae may represent promising molecules toward therapeutic applications in the field of bone biology.