Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Past climate-driven range shifts structuring intraspecific biodiversity levels of the giant kelp (Macrocystis pyrifera) at global scalesPublication . Assis, Jorge; Alberto, Filipe; Macaya, Erasmo C.; Coelho, Nelson; Faugeron, Sylvain; Pearson, Gareth; Ladah, Lydia; Reed, Daniel C.; Raimondi, Peter; Mansilla, Andrés; Brickle, Paul; Zuccarello, Giuseppe C.; Serrao, EsterThe paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species' population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution of Macrocystis pyrifera is composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following similar to 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.
- Deep reefs are climatic refugia for genetic diversity of marine forestsPublication . Assis, J.; Coelho, Nelson Castilho; Lamy, Thomas; Valero, Myriam; Alberto, Filipe; Serrão, EsterAimPast climate-driven range shifts shaped intraspecific diversities of species world-wide. Earlier studies, focused on glacial refugia, might have overlooked genetic erosion at lower latitudes associated with warmer periods. For marine species able to colonize deeper waters, depth shifts might be important for local persistence, preventing some latitudinal shifts, analogous to elevational refugia in terrestrial habitats. In this study, we asked whether past latitudinal or depth range shifts explain extant gene pools in Saccorhiza polyschides, a large habitat structuring brown alga distributed from coastal to offshore deep reefs.LocationNorth-east Atlantic and western Mediterranean basin.MethodsGenetic structure and diversity were inferred using seven microsatellite loci, for 27 sites throughout the entire distributional range. Ecological niche modelling (ENM) was performed with and without information about genetic structure (sub-taxon niche structure) to predict distributions for the Last Glacial Maximum (LGM), the warmer Mid-Holocene (MH) and the present.ResultsBoth ENM approaches predicted a wider potential distribution in deeper waters than is presently known, a post-glacial expansion to northern shores and the extirpation of southern edges during the warmer MH. Genetic data corroborated range dynamics, revealing three major genetic groups with current boundaries in the Bay of Biscay and the Lisbon coastal region, pinpointing ancient refugial origins. Despite extensive southern range contraction, the southernmost warmer regions are still the richest in genetic diversity, indicating long-term persistence of large populations. ENMs suggested that this could only have been possible due to stable refugia in deeper reefs.Main conclusionsThe global distribution of gene pools of temperate marine forests is explained by past range shifts that structured both latitudinal glacial refugia and depth refugia during warmer periods. Deep rear edge populations play a fundamental role during periods of extreme climate, allowing persistence and retaining some of the largest genetic diversity pools of the species' distribution.
- Individual-based genetic analyses support asexual hydrochory dispersal in Zostera nolteiPublication . Berković, Buga; Coelho, Nelson; Gouveia, Licínia; Serrao, Ester; Alberto, FilipeDispersal beyond the local patch in clonal plants was typically thought to result from sexual reproduction via seed dispersal. However, evidence for the separation, transport by water, and re-establishment of asexual propagules (asexual hydrochory) is mounting suggesting other important means of dispersal in aquatic plants. Using an unprecedented sampling size and microsatellite genetic identification, we describe the distribution of seagrass clones along tens of km within a coastal lagoon in Southern Portugal. Our spatially explicit individual-based sampling design covered 84 km(2) and collected 3 185 Zostera noltei ramets from 803 sites. We estimated clone age, assuming rhizome elongation as the only mechanism of clone spread, and contrasted it with paleo-oceanographic sea level change. We also studied the association between a source of disturbance and the location of large clones. A total of 16 clones were sampled more than 10 times and the most abundant one was sampled 59 times. The largest distance between two samples from the same clone was 26.4 km and a total of 58 and 10 clones were sampled across more than 2 and 10 km, respectively. The number of extremely large clone sizes, and their old ages when assuming the rhizome elongation as the single causal mechanism, suggests other processes are behind the span of these clones. We discuss how the dispersal of vegetative fragments in a stepping-stone manner might have produced this pattern. We found higher probabilities to sample large clones away from the lagoon inlet, considered a source of disturbance. This study corroborates previous experiments on the success of transport and re-establishment of asexual fragments and supports the hypothesis that asexual hydrochory is responsible for the extent of these clones.