Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Mob1: defining cell polarity for proper cell divisionPublication . Tavares, Alexandra; Gonçalves, João; Florindo, Claudia; Tavares, Alvaro A.; Soares, HelenaMob1 is a component of both the mitotic exit network and Hippo pathway, being required for cytokinesis, control of cell proliferation and apoptosis. Cell division accuracy is crucial in maintaining cell ploidy and genomic stability and relies on the correct establishment of the cell division axis, which is under the control of the cell's environment and its intrinsic polarity. The ciliate Tetrahymena thermophila possesses a permanent anterior posterior axis, left right asymmetry and divides symmetrically. These unique features of Tetrahymena prompted us to investigate the role of Tetrahymena Mob1. Unexpectedly, we found that Mob1 accumulated in basal bodies at the posterior pole of the cell, and is the first molecular polarity marker so far described in Tetrahymena. In addition, Mob1 depletion caused the abnormal establishment of the cell division plane, providing clear evidence that Mob1 is important for its definition. Furthermore, cytokinesis was arrested and ciliogenesis delayed in Tetrahymena cells depleted of Mob1. This is the first evidence for an involvement of Mob1 in cilia biology. In conclusion, we show that Mob1 is an important cell polarity marker that is crucial for correct division plane placement, for cytokinesis completion and for normal cilia growth rates.
- Human Mob1 proteins are required for cytokinesis by controlling microtubule stabilityPublication . Florindo, Claudia; Perdigao, Joana; Fesquet, Didier; Schiebel, Elmar; Pines, Jonathon; Tavares, Alvaro A.The completion of cytokinesis requires abscission of the midbody, a microtubule-rich cytoplasmic bridge that connects the daughter cells before their final separation. Although it has been established that both the midbody structure and membrane fusion are essential for abscission, the biochemical machinery and the cellular processes of abscission remain ill-defined. Here we report that human Mob1A and Mob1B proteins are involved in the regulation of abscission of the intercellular bridge. The Mob family is a group of highly conserved proteins in eukaryotes, described as binding partners as well as co-activators of protein kinases of the Ndr family, and as members of the Hippo pathway. We show that depletion of Mob1A and Mob1B by RNAi causes abscission failure as a consequence of hyper-stabilization of microtubules in the midbody region. Interestingly, depleting Mob1 also increases cell motility after cytokinesis, and induces prolonged centriole separation in G1 phase. In contrast, centrosomes fail to split when either Mob1A or Mob1B is overexpressed. Our findings indicate that human Mob1 proteins are involved in the regulation of microtubule stability at the midbody. We conclude that Mob1A and Mob1B are needed for cell abscission and centriole re-joining after telophase and cytokinesis.