Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Design of ensemble forecasting models for home energy management systemsPublication . Bot, Karol; Santos, Samira; Habou Laouali, Inoussa; Ruano, Antonio; Ruano, Maria da GraçaThe increasing levels of energy consumption worldwide is raising issues with respect to surpassing supply limits, causing severe effects on the environment, and the exhaustion of energy resources. Buildings are one of the most relevant sectors in terms of energy consumption; as such, efficient Home or Building Management Systems are an important topic of research. This study discusses the use of ensemble techniques in order to improve the performance of artificial neural networks models used for energy forecasting in residential houses. The case study is a residential house, located in Portugal, that is equipped with PV generation and battery storage and controlled by a Home Energy Management System (HEMS). It has been shown that the ensemble forecasting results are superior to single selected models, which were already excellent. A simple procedure was proposed for selecting the models to be used in the ensemble, together with a heuristic to determine the number of models.
- Home energy management systems with branch-and-bound model-based predictive control techniquesPublication . Bot, Karol; Habou Laouali, Inoussa; Ruano, Antonio; Ruano, MariaAt a global level, buildings constitute one of the most significant energy-consuming sectors. Current energy policies in the EU and the U.S. emphasize that buildings, particularly those in the residential sector, should employ renewable energy and storage and efficiently control the total energy system. In this work, we propose a Home Energy Management System (HEMS) by employing a Model-Based Predictive Control (MBPC) framework, implemented using a Branch-and-Bound (BAB) algorithm. We discuss the selection of different parameters, such as time-step, to employ prediction and control horizons and the effect of the weather in the system performance. We compare the economic performance of the proposed approach against a real PV-battery system existing in a household equipped with several IoT devices, concluding that savings larger than 30% can be obtained, whether on sunny or cloudy days. To the best of our knowledge, these are excellent values compared with existing solutions available in the literature.