Repository logo
 
Loading...
Profile Picture
Person

De Sousa-Coelho, Ana Luísa

Search Results

Now showing 1 - 5 of 5
  • Decavanadate and metformin-decavanadate effects in human melanoma cells
    Publication . de Sousa-Coelho, Ana Luísa; Aureliano, Manuel; Fraqueza, Gil; Serrão, Gisela; Gonçalves, João; Sánchez-Lombardo, Irma; Link, Wolfgang; Ferreira, Bibiana
    Decavanadate is a polyoxometalate (POMs) that has shown extensive biological activities, including antidiabetic and anticancer activity. Importantly, vanadium-based compounds as well as antidiabetic biguanide drugs, such as metformin, have shown to exert therapeutic effects in melanoma. A combination of these agents, the metformin-decavanadate complex, was also recognized for its antidiabetic effects and recently described as a better treatment than the monotherapy with metformin enabling lower dosage in rodent models of diabetes. Herein, we compare the effects of decavanadate and metformin-decavanadate on Ca2+-ATPase activity in sarcoplasmic reticulum vesicles from rabbit skeletal muscles and on cell signaling events and viability in human melanoma cells. We show that unlike the decavanadate-mediated non-competitive mechanism, metformin-decavanadate inhibits Ca2+-ATPase by a mixed-type competitive-non-competitive inhibition with an IC50 value about 6 times higher (87 mu M) than the previously described for decavanadate (15 mu M). We also found that both decavanadate and metformin-decavanadate exert antiproliferative effects on melanoma cells at 10 times lower concentrations than monomeric vanadate. Western blot analysis revealed that both, decavanadate and metformin-decavanadate increased phosphorylation of extracellular signal-regulated kinase (ERK) and serine/ threonine protein kinase AKT signaling proteins upon 24 h drug exposure, suggesting that the anti-proliferative activities of these compounds act independent of growth-factor signaling pathways.
  • FOXO1 represses PPARα-Mediated induction of FGF21 gene expression
    Publication . De Sousa-Coelho, Ana Luísa; Gacias, Mar; O'Neill, Brian T.; Relat, Joana; Link, Wolfgang; Haro, Diego; Marrero, Pedro F.
    Fibroblast growth factor 21 (FGF21) has emerged as a metabolic regulator that exerts potent anti-diabetic and lipid-lowering effects in animal models of obesity and type 2 diabetes, showing a protective role in fatty liver disease and hepatocellular carcinoma progression. Hepatic expression of FGF21 is regulated by PPARa and is induced by fasting. Ablation of FoxO1 in liver has been shown to increase FGF21 expression in hyperglycemia. To better understand the role of FOXO1 in the regulation of FGF21 expression we have modified HepG2 human hepatoma cells to overexpress FoxO1 and PPARa. Here we show that FoxO1 represses PPARa-mediated FGF21 induction, and that the repression acts on the FGF21 gene promoter without affecting other PPARa target genes. Additionally, we demonstrate that FoxO1 physically interacts with PPARa and that FoxO1/3/4 depletion in skeletal muscle contributes to increased Fgf21 tissue levels. Taken together, these data indicate that FOXO1 is a PPARa-interacting protein that antagonizes PPARa activity on the FGF21 promoter. Because other PPARa target genes remained unaffected, these results suggest a highly specific mechanism implicated in FGF21 regulation. We conclude that FGF21 can be specifically modulated by FOXO1 in a PPARa-dependent manner. (c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
  • Harmine and Piperlongumine revert TRIB2-mediated drug resistance
    Publication . Machado, Susana; Silva, Andreia; De Sousa-Coelho, Ana Luísa; Duarte, Isabel; Grenho, Inês; Santos, Bruno F; Mayoral-Varo, Victor; Megias, Diego; Sánchez-Cabo, Fátima; Dopazo, Ana; Ferreira, Bibiana I.; Link, Wolfgang
    Therapy resistance is responsible for most relapses in patients with cancer and is the major challenge to improving the clinical outcome. The pseudokinase Tribbles homologue 2 (TRIB2) has been characterized as an important driver of resistance to several anti-cancer drugs, including the dual ATP-competitive PI3K and mTOR inhibitor dactolisib (BEZ235). TRIB2 promotes AKT activity, leading to the inactivation of FOXO transcription factors, which are known to mediate the cell response to antitumor drugs. To characterize the downstream events of TRIB2 activity, we analyzed the gene expression profiles of isogenic cell lines with different TRIB2 statuses by RNA sequencing. Using a connectivity map-based computational approach, we identified drug-induced gene-expression profiles that invert the TRIB2-associated expression profile. In particular, the natural alkaloids harmine and piperlongumine not only produced inverse gene expression profiles but also synergistically increased BEZ235-induced cell toxicity. Importantly, both agents promote FOXO nuclear translocation without interfering with the nuclear export machinery and induce the transcription of FOXO target genes. Our results highlight the great potential of this approach for drug repurposing and suggest that harmine and piperlongumine or similar compounds might be useful in the clinic to overcome TRIB2-mediated therapy resistance in cancer patients.
  • Tribbles pseudokinases in colorectal cancer
    Publication . Ferreira, Bibiana; Santos, Bruno F; Link, Wolfgang; De Sousa-Coelho, Ana Luísa
    The Tribbles family of pseudokinases controls a wide number of processes during cancer on-set and progression. However, the exact contribution of each of the three family members is still to be defined. Their function appears to be context-dependent as they can act as oncogenes or tumor suppressor genes. They act as scaffolds modulating the activity of several signaling pathways involved in different cellular processes. In this review, we discuss the state-of-knowledge for TRIB1, TRIB2 and TRIB3 in the development and progression of colorectal cancer. We take a perspective look at the role of Tribbles proteins as potential biomarkers and therapeutic targets. Specifically, we chronologically systematized all available articles since 2003 until 2020, for which Tribbles were associated with colorectal cancer human samples or cell lines. Herein, we discuss: (1) Tribbles amplification and overexpression; (2) the clinical significance of Tribbles overexpression; (3) upstream Tribbles gene and protein expression regulation; (4) Tribbles pharmacological modulation; (5) genetic modulation of Tribbles; and (6) downstream mechanisms regulated by Tribbles; establishing a comprehensive timeline, essential to better consolidate the current knowledge of Tribbles’ role in colorectal cancer.
  • Tribbles gene expression profiles in colorectal cancer
    Publication . Fernandes, Mónica T.; Yassuda, Victor; Bragança, José; Link, Wolfgang; Ferreira, Bibiana; De Sousa-Coelho, Ana Luísa
    Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.