Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Bethe states and Knizhnik-Zamolodchikov equations of the trigonometric Gaudin model with triangular boundary
    Publication . Salom, I.; Manojlović, Nenad
    We present a comprehensive treatment of the non-periodic trigonometric s (2) Gaudin model with tri angular boundary, with an emphasis on specific freedom found in the local realization of the generators, as well as in the creation operators used in the algebraic Bethe ansatz. First, we give Bethe vectors of the non-periodic trigonometric s (2) Gaudin model both through a recurrence relation and in a closed form. Next, the off-shell action of the generating function of the trigonometric Gaudin Hamiltonians with gen eral boundary terms on an arbitrary Bethe vector is shown, together with the corresponding proof based on mathematical induction. The action of the Gaudin Hamiltonians is given explicitly. Furthermore, by careful choice of the arbitrary functions appearing in our more general formulation, we additionally obtain: i) the solutions to the Knizhnik-Zamolodchikov equations (each corresponding to one of the Bethe states); ii) compact formulas for the on-shell norms of Bethe states; and iii) closed-form expressions for the off-shell scalar products of Bethe states.
  • Rational so(3) Gaudin model with general boundary terms
    Publication . Manojlović, Nenad; Salom, I.
    We study the so(3) Gaudin model with general boundary K-matrix in the framework of the algebraic Bethe ansatz. The off-shell action of the generating function of the so(3) Gaudin Hamiltonians is determined. The proof based on the mathematical induction is presented on the algebraic level without any restriction whatsoever on the boundary parameters. The so(3) Gaudin Hamiltonians with general boundary terms are given explicitly as well as their off-shell action on the Bethe states. The correspondence between the Bethe states and the solutions to the generalized so(3) Knizhnik-Zamolodchikov equations is established. In this context, the on-shell norm of the Bethe states is determined as well as their off-shell scalar product.