Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Using quinine as a fluorescent tracer to estimate overland flow velocities on bare soil: Proof of concept under controlled laboratory conditions
    Publication . de Lima, João L. M. P.; Zehsaz, Soheil; de Lima, M. Isabel P.; Isidoro, Jorge M. G. P.; Jorge, Romeu Gerardo; Martins, Ricardo
    This study presents a tracer technique based on the fluorescent properties of quinine to help on the visualization of shallow flows and allow a quantitative measurement of overland flow velocities. Laboratory experiments were conducted to compare the traditional dye tracer and thermal tracer techniques with this novel fluorescent (quinine) tracer by injecting a quinine solution and the other tracers into shallow flowing surface water. The leading-edge tracer velocities, estimated using videos of the experiments with the quinine tracer were compared with the velocities obtained by using thermograms and real imaging videos of the dye tracers. The results show that the quinine tracer can be used to estimate both overland and rill flow velocities, since measurements are similar to those resulting from using other commonly used tracers. The main advantage of using the quinine tracer is the higher visibility of the injected tracer under ultraviolet A (UVA) light for low luminosity conditions. In addition, smaller amounts of quinine tracer are needed than for dye tracers, which lead to smaller disturbances in the flow. It requires a simple experimental setup and is non-toxic to the environment.
  • Estimating sheet flow velocities using quinine as a fluorescent tracer: bare, mulched, vegetated and paved surfaces
    Publication . Zehsaz, Soheil; de Lima, João L. M. P.; de Lima, M. Isabel P.; MGP Isidoro, Jorge; Martins, Ricardo
    When direct flow velocity measurements are not feasible, the use of tracers can be a valuable tool. In the present study, both laboratory and field experiments were conducted to evaluate the applicability of quinine as a fluorescent tracer for estimating mean sheet flow velocities in different ambient light and surface morphology conditions. Quinine excels in low-light conditions when exposed to UVA light. This tracer was compared with dye and thermal tracers, all in liquid form. In these tracing techniques the tracers were injected into the flow, after which surface velocity was estimated by tracking the leading edge of the tracer plumes and applying a correction factor to calculate the mean velocity (in a water column). The visibility of the tracers was evaluated by measuring the relative luminance and contrast ratio of the quinine and dye tracer plumes. Results show that the quinine tracer can be used to estimate sheet flow velocities over a wide variety of soil and urban surfaces; it has better visibility in comparison to the dye tracer but, in some conditions, lower visibility than the thermal tracer. Although quinine is invisible under bright ambient light conditions, this tracer technique requires low-cost experimental setup and is useful in low-light conditions (e.g., night; twilight; shielded environments).
  • Fluorescent quinine-based tracking techniques for measurement of open-channel surface flow velocities under low luminosity conditions using a UAS
    Publication . Zehsaz, Soheil; L. M. P. de Lima, João; Isidoro, Jorge; de Lima, M. Isabel P.; Martins, Ricardo
    This study presents techniques based on the use of fluorescent quinine as a visual tracer for surface flows, to assess surface flow velocities in channels and streams under low luminosity conditions. Fieldwork was conducted in three open channels, with different hydraulic characteristics. A quinine solution, in both liquid and solid (ice cube) forms, was applied on the water flow surface and an Unmanned Aerial System (UAS) was used to record the movement of the fluorescent quinine. The results were compared to the velocities estimated using the thermal tracer technique and flowmeter-based velocity maps. The findings show that the quinine solution, in both liquid and solid forms, can be used to estimate open-channel surface flow velocities under low luminosity conditions. While the solid form of the quinine tracer was applied in a smaller volume than the liquid tracer, its fluorescence effect persisted longer. By comparison, the liquid tracer had the advantage of continual availability and was devoid of the constraint of melting.