Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Design of remediation pilot plants for the treatment of industrial metal-bearing effluents (BIOMETAL DEMO project): Lab tests
    Publication . Ballester, Antonio; Castro, Laura; Clara Costa, Maria; Carlier, Jorge; Garcia-Roig, Manuel; Perez-Galende, Patricia; Alvarez, Angela; Bertagnolli, Caroline; Guibal, Eric
    Current research is the first part of the BIOMETAL DEMO project, funded by the European Union, focusing on the development of complementary and modular biotreatment processes for the removal of metal ions from industrial effluents (issued from mining industry, surface treatment and ceramics). Metal bio-precipitation (in form of metal sulfides and metal phosphates) using sulfate-reducing bacteria (SRB), phytase and phosphatase enzymes, biosorption using sugar-beet pulp, algal biomass and alginate- or chitosan-based composites (immobilizing polyethyleneimine derivatives by encapsulation) have been extensively studied using synthetic and industrial effluents. These preliminary results allow designing a treatment flow-sheet including pre-treatment of the effluent using biologically-assisted precipitation followed by biosorption (for mining effluents that contain sulfate anions). For surface treatment and ceramics effluents, bio-precipitation combined with biosorption processes and physicochemical pretreatment followed by biosorption process represent, respectively, a promising solution. The carbon-source for the SRB process, the optimization of process parameters and the biosorbents have been selected taking into account both the technical performance and the economic viability. (C) 2016 Elsevier B.V. All rights reserved.
  • Potential of industrial by-products and wastes from the Iberian Peninsula as carbon sources for sulphate-reducing bacteria
    Publication . Carlier, Jorge; Alexandre, Leonardo Machado; Luís, Ana; Clara Costa, Maria
    Industrial by-products and wastes from Portugal and Spain were tested for the first time as carbon sources/electron donors for sulphate-reducing bacteria. Cultures in mineral medium supplemented with the tested substrates were monitored, and sulphate reduction efficiency is discussed in light of substrates compositions, dosages and corresponding chemical oxygen demand/[SO42-] ratios. The results reveal the ability of those substrates to feed SRB and confirm that testing doses targeting ratios of 1.5 and values close to this was a good strategy to optimize sulphate reduction activity. As expected, this activity was faster for substrates that have in their composition simple compounds (such as low-chain alcohols and organic acids) and/or compounds that can be rapidly degraded (such as sugars), though it also occurred in a longer-term perspective with substrates composed mainly of slowly degradable compounds (such as cellulose and lignin). Thus, this work demonstrates the potential of new substrates and respective required doses to feed SRB bioreactors in long-term passive bioremediation processes or faster more active processes. That is, it opens the way for the use of such substrates in the treatment of sulphate-rich waters, as the acid mine drainage generated in some mines on the Iberian Pyrite Belt region, and it encourages further experiments to evaluate the use of SRB-based processes to treat the industrial wastewaters successfully tested in this work themselves, specially the olive mill wastewater which is still a problem for many small olive oil producers.