Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Antioxidant and anti-inflammatory extracts from sea cucumbers and tunicates induce a pro-osteogenic effect in Zebrafish LarvaePublication . Carletti, Alessio; Cardoso, Carlos; Lobo-Arteaga, Jorge; Sales, Sabrina; Juliao, Diana; Ferreira, Inês; Chainho, Paula; Dionísio, Maria Ana; Gaudêncio, Maria J.; Afonso, Cláudia; Lourenço, Helena; Cancela, M. Leonor; Bandarra, Narcisa M.; J. Gavaia, PauloBone metabolic disorders such as osteoporosis are characterized by the loss of mineral from the bone tissue leading to its structural weakening and increased susceptibility to fractures. A growing body of evidence suggests that inflammation and oxidative stress play an important role in the pathophysiological processes involved in the rise of these conditions. As the currently available therapeutic strategies are often characterized by toxic effects associated with their long-term use, natural antioxidants and anti-inflammatory compounds such as polyphenols promise to be a valuable alternative for the prevention and treatment of these disorders. In this scope, the marine environment is becoming an important source of bioactive compounds with potential pharmacological applications. Here, we explored the bioactive potential of three species of holothurians (Echinodermata) and four species of tunicates (Chordata) as sources of antioxidant and anti-inflammatory compounds with a particular focus on polyphenolic substances. Hydroethanolic and aqueous extracts were obtained from animals' biomass and screened for their content of polyphenols and their antioxidant and anti-inflammatory properties. Hydroethanolic fractions of three species of tunicates displayed high polyphenolic content associated with strong antioxidant potential and anti-inflammatory activity. Extracts were thereafter tested for their capacity to promote bone formation and mineralization by applying an assay that uses the developing operculum of zebrafish (Danio rerio) to assess the osteogenic activity of compounds. The same three hydroethanolic fractions from tunicates were characterized by a strong in vivo osteogenic activity, which positively correlated with their anti-inflammatory potential as measured by COX-2 inhibition. This study highlights the therapeutic potential of polyphenol-rich hydroethanolic extracts obtained from three species of tunicates as a substrate for the development of novel drugs for the treatment of bone disorders correlated to oxidative stress and inflammatory processes.
- The osteogenic and mineralogenic potential of the microalgae Skeletonema costatum and Tetraselmis striata CTP4 in fish modelsPublication . Carletti, Alessio; Rosa, Joana; Pes, Katia; Borges, Inês; Santos, Tamara; Barreira, Luísa; Varela, João; Pereira, Hugo; Cancela, M. Leonor; J. Gavaia, Paulo; Laizé, VincentSkeletal disorders are problematic aspects for the aquaculture industry as skeletal deformities, which affect most species of farmed fish, increase production costs and affect fish welfare. Following recent findings that show the presence of osteoactive compounds in marine organisms, we evaluated the osteogenic and mineralogenic potential of commercially available microalgae strains Skeletonema costatum and Tetraselmis striata CTP4 in several fish systems. Ethanolic extracts increased extracellular matrix mineralization in gilthead seabream (Sparus aurata) bone-derived cell cultures and promoted osteoblastic differentiation in zebrafish (Danio rerio) larvae. Long-term dietary exposure to both extracts increased bone mineralization in zebrafish and upregulated the expression of genes involved in bone formation (sp7, col1a1a, oc1, and oc2), bone remodeling (acp5a), and antioxidant defenses (cat, sod1). Extracts also improved the skeletal status of zebrafish juveniles by reducing the incidence of skeletal anomalies. Our results indicate that both strains of microalgae contain osteogenic and mineralogenic compounds, and that ethanolic extracts have the potential for an application in the aquaculture sector as dietary supplements to support fish bone health. Future studies should also identify osteoactive compounds and establish whether they can be used in human health to broaden the therapeutic options for bone erosive disorders such as osteoporosis.