Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Patterning in time and space: HoxB cluster gene expression in the developing chick embryo
    Publication . Gouveia, Analuce; Marcelino, Hugo M.; Gonçalves, Lisa; Palmeirim, Isabel; Andrade, Raquel P.
    The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.
  • Sonic hedgehog in temporal control of somite formation
    Publication . Resende, Tatiana P.; Ferreira, Monica; Teillet, Marie-Aimee; Tavares, Ana Teresa; Andrade, Raquel P.; Palmeirim, Isabel
    Vertebrate embryo somite formation is temporally controlled by the cyclic expression of somitogenesis clock genes in the presomitic mesoderm (PSM). The somitogenesis clock is believed to be an intrinsic property of this tissue, operating independently of embryonic midline structures and the signaling molecules produced therein, namely Sonic hedgehog (Shh). This work revisits the notochord signaling contribution to temporal control of PSM segmentation by assessing the rate and number of somites formed and somitogenesis molecular clock gene expression oscillations upon notochord ablation. The absence of the notochord causes a delay in somite formation, accompanied by an increase in the period of molecular clock oscillations. Shh is the notochord-derived signal responsible for this effect, as these alterations are recapitulated by Shh signaling inhibitors and rescued by an external Shh supply. We have characterized chick smoothened expression pattern and have found that the PSM expresses both patched1 and smoothened Shh signal transducers. Upon notochord ablation, patched1, gli1, and fgf8 are down-regulated, whereas gli2 and gli3 are overexpressed. Strikingly, notochord-deprived PSM segmentation rate recovers over time, concomitant with raldh2 overexpression. Accordingly, exogenous RA supplement rescues notochord ablation effects on somite formation. A model is presented in which Shh and RA pathways converge to inhibit PSM Gli activity, ensuring timely somite formation. Altogether, our data provide evidence that a balance between different pathways ensures the robustness of timely somite formation and that notochord-derived Shh is a component of the molecular network regulating the pace of the somitogenesis clock.
  • Cell–fibronectin interactions and actomyosin contractility regulate the segmentation clock and spatio-temporal somite cleft formation during chick embryo somitogenesis
    Publication . Gomes De Almeida, Patrícia; Rifes, Pedro; Jesus, Ana Patrícia; Pinheiro, Gonçalo; P. Andrade, Raquel; Thorsteinsdóttir, Sólveig
    Fibronectin is essential for somite formation in the vertebrate embryo. Fibronectin matrix assembly starts as cells emerge from the primitive streak and ingress in the unsegmented presomitic mesoderm (PSM). PSM cells undergo cyclic waves of segmentation clock gene expression, followed by Notch-dependent upregulation of meso1 in the rostral PSM which induces somite cleft formation. However, the relevance of the fibronectin matrix for these molecular processes remains unknown. Here, we assessed the role of the PSM fibronectin matrix in the spatio-temporal regulation of chick embryo somitogenesis by perturbing (1) extracellular fibronectin matrix assembly, (2) integrin–fibronectin binding, (3) Rho-associated protein kinase (ROCK) activity and (4) non-muscle myosin II (NM II) function. We found that integrin–fibronectin engagement and NM II activity are required for cell polarization in the nascent somite. All treatments resulted in defective somitic clefts and significantly perturbed meso1 and segmentation clock gene expression in the PSM. Importantly, inhibition of actomyosin-mediated contractility increased the period of hairy1/hes4 oscillations from 90 to 120 min. Together, our work strongly suggests that the fibronectin–integrin–ROCK–NM II axis regulates segmentation clock dynamics and dictates the spatio-temporal localization of somitic clefts.