Loading...
Research Project
Identification and characterization of redox regulatory proteins involved in cancer progression
Funder
Authors
Publications
Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5 alpha-dihydrotestosterone regulation
Publication . Cardoso, Henrique J.; Figueira, Marilia, I; Vaz, Catia V.; Carvalho, Tiago M. A.; Bras, Luis A.; Madureira, Patricia; Oliveira, Paulo J.; Sardao, Vilma A.; Socorro, Silvia
Purpose Resistance to androgen-deprivation therapies and progression to so-called castrate-resistant prostate cancer (CRPC) remain challenges in prostate cancer (PCa) management and treatment. Among other alterations, CRPC has been associated with metabolic reprogramming driven by androgens. Here, we investigated the role of androgens in regulating glutaminolysis in PCa cells and determined the relevance of this metabolic route in controlling the survival and growth of androgen-sensitive (LNCaP) and CRPC (DU145 and PC3) cells. Methods PCa cells (LNCaP, DU145 and PC3) and 3-month old rats were treated with 5 alpha-dihydrotestosterone (DHT). Alternatively, LNCaP cells were exposed to the glutaminase inhibitor BPTES, alone or in combination with the anti-androgen bicalutamide. Biochemical, Western blot and extracellular flux assays were used to evaluate the viability, proliferation, migration and metabolism of PCa cells in response to DHT treatment or glutaminase inhibition. Results We found that DHT up-regulated the expression of the glutamine transporter ASCT2 and glutaminase, both in vitro in LNCaP cells and in vivo in rat prostate cells. BPTES diminished the viability and migration of PCa cells, while increasing caspase-3 activity. CRPC cells were found to be more dependent on glutamine and more sensitive to glutaminase inhibition. BPTES and bicalutamide co-treatment had an additive effect on suppressing LNCaP cell viability. Finally, we found that inhibition of glutaminolysis differentially affected glycolysis and lipid metabolism in both androgen-sensitive and CRPC cells. Conclusion Our data reveal glutaminolysis as a central metabolic route controlling PCa cell fate and highlight the relevance of targeting glutaminase for CRPC treatment.
The role of hypoxia in glioblastoma invasion
Publication . Monteiro, Ana; Hill, Richard; Pilkington, Geoffrey; A Madureira, Patricia
Glioblastoma multiforme (GBM), a grade IV astrocytoma, is the most common and deadly type of primary malignant brain tumor, with a patient's median survival rate ranging from 15 to 17 months. The current treatment for GBM involves tumor resection surgery based on MRI image analysis, followed by radiotherapy and treatment with temozolomide. However, the gradual development of tumor resistance to temozolomide is frequent in GBM patients leading to subsequent tumor regrowth/relapse. For this reason, the development of more effective therapeutic approaches for GBM is of critical importance. Low tumor oxygenation, also known as hypoxia, constitutes a major concern for GBM patients, since it promotes cancer cell spreading (invasion) into the healthy brain tissue in order to evade this adverse microenvironment. Tumor invasion not only constitutes a major obstacle to surgery, radiotherapy, and chemotherapy, but it is also the main cause of death in GBM patients. Understanding how hypoxia triggers the GBM cells to become invasive is paramount to developing novel and more effective therapies against this devastating disease. In this review, we will present a comprehensive examination of the available literature focused on investigating how GBM hypoxia triggers an invasive cancer cell phenotype and the role of these invasive proteins in GBM progression.
Androgens and low density lipoprotein-cholesterol interplay in modulating prostate cancer cell fate and metabolism
Publication . Cardoso, Henrique J.; Figueira, Marília I.; Carvalho, Tiago M.A.; Serra, Catarina D.M.; Vaz, Cátia V.; Madureira, Patricia; Socorro, Sílvia
Background: Androgens, the known drivers of prostate cancer (PCa), have been indicated as important metabolic regulators with a relevant role in stimulating lipid metabolism. Also, the relationship between obesity and the aggressiveness of PCa has been established. However, it is unknown if the androgenic hormonal environment may alter the response of PCa cells to lipid availability. Purpose: The present study evaluated the effect of 5 alpha-dihydrotestosterone (DHT) in regulating lipid metabolism, and the interplay between this hormone and low-density lipoprotein (LDL)-cholesterol in modulating PCa cells fate.Methods: Non-neoplastic and neoplastic PCa cells were treated with 10 nM DHT, and the expression of fatty acids transporter, fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A) evaluated. PCa cells were also exposed to LDL (100 mu g/ml) in the presence or absence of DHT.Results: Treatment with DHT upregulated the expression of FASN and CPT1A in androgen-sensitive PCa cells. In contrast, LDL supplementation suppressed FASN expression regardless of the presence of DHT, whereas aug-menting CPT1A levels. Our results also showed that LDL-cholesterol increased PCa cells viability, proliferation, and migration dependently on the presence of DHT. Moreover, LDL and DHT synergistically enhanced the accumulation of lipid droplets in PCa cells.Conclusions: The obtained results show that androgens deregulate lipid metabolism and enhance the effects of LDL increasing PCa cells viability, proliferation and migration. The present findings support clinical data linking obesity with PCa and first implicate androgens in this relationship. Also, they sustain the application of phar-macological approaches targeting cholesterol availability and androgens signaling simultaneously.
TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT
Publication . Hill, Richard; Madureira, Patricia; Ferreira, Bibiana; Baptista, Inês; Machado, S.; Colaco, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, Wolfgang
Intrinsic and acquired resistance to chemotherapy is the fundamental reason for treatment failure for many cancer patients. The identification of molecular mechanisms involved in drug resistance or sensitization is imperative. Here we report that tribbles homologue 2 (TRIB2) ablates forkhead box O activation and disrupts the p53/MDM2 regulatory axis, conferring resistance to various chemotherapeutics. TRIB2 suppression is exerted via direct interaction with AKT a key signalling protein in cell proliferation, survival and metabolism pathways. Ectopic or intrinsic high expression of TRIB2 induces drug resistance by promoting phospho-AKT (at Ser473) via its COP1 domain. TRIB2 expression is significantly increased in tumour tissues from patients correlating with an increased phosphorylation of AKT, FOXO3a, MDM2 and an impaired therapeutic response. This culminates in an extremely poor clinical outcome. Our study reveals a novel regulatory mechanism underlying drug resistance and suggests that TRIB2 functions as a regulatory component of the PI3K network, activating AKT in cancer cells.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Investigador FCT
Funding Award Number
IF/00614/2014/CP1234/CT0006