Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Operational stability of solution based zinc tin oxide/SiO2 thin film transistors under gate bias stress
Publication . Kiazadeh, Asal; Salgueiro, Daniela; Branquinho, Rita; Pinto, Joana; Gomes, Henrique L.; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira
In this study, we report solution-processed amorphous zinc tin oxide transistors exhibiting high operational stability under positive gate bias stress, translated by a recoverable threshold voltage shift of about 20% of total applied stress voltage. Under vacuum condition, the threshold voltage shift saturates showing that the gate-bias stress is limited by trap exhaustion or balance between trap filling and emptying mechanism. In ambient atmosphere, the threshold voltage shift no longer saturates, stability is degraded and the recovering process is impeded. We suggest that the trapping time during the stress and detrapping time in recovering are affected by oxygen adsorption/desorption processes. The time constants extracted from stretched exponential fitting curves are approximate to 10(6) s and 10(5) s in vacuum and air, respectively. (C) 2015 Author(s).
Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles
Publication . Braz, Luis; Grenha, Ana; Corvo, Marta C.; Lourenço, João P.; Ferreira, Domingos; Sarmento, Bruno; Costa, Ana M. Rosa da
The development of LBG-based nanoparticles intending an application in oral immunization is presented. Nanoparticle production occurred by mild polyelectrolyte complexation, requiring the chemical modification of LBG. Three LBG derivatives were synthesized, namely a positively charged ammonium derivative (LBGA) and negatively charged sulfate (LBGS) and carboxylate (LBGC) derivatives. These were characterized by Fourier-transform infrared spectroscopy, elemental analysis, nuclear magnetic resonance spectroscopy, gel permeation chromatography, and x-ray diffraction. As a pharmaceutical application was aimed, a toxicological analysis of the derivatives was performed by both MTT test and LDH release assay. Several nanoparticle formulations were produced using LBGA or chitosan (CS) as positively charged polymers, and LBGC or LBGS as negatively charged counterparts, producing nanoparticles with adequate properties regarding an application in oral immunization.
Memristors using solution-based IGZO nanoparticles
Publication . Rosa, Jose; Kiazadeh, Asal; Santos, Lidia; Deuermeier, Jonas; Martins, Rodrigo; Gomes, Henrique L.; Fortunato, Elvira
Solution-based indium-gallium-zinc oldde (IGZO) nanoparticles deposited by spin coating have been investigated as a resistive switching layer in metal-insulator-metal structures for nonvolatile memory applications. Optimized devices show a bipolar resistive switching behavior, low programming voltages of +/- 1 V, on/off ratios higher than 10, high endurance, and a retention time of up to 104 s. The better performing devices were achieved with annealing temperatures of 200 degrees C and using asymmetric electrode materials of titanium and silver. The physics behind the improved switching properties of the devices is discussed in terms of the oxygen deficiency of IGZO. Temperature analysis of the conductance states revealed a nonmetallic filamentary conduction. The presented devices are potential candidates for the integration of memory functionality into low-cost System-on-Panel technology.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

5876

Funding Award Number

UID/CTM/50025/2013

ID