Loading...
Research Project
Development of a sustainable package from Salicornia ramosissima by-product for high pressure process
Funder
Authors
Publications
Shelf‐life study of a Salicornia ramosissima vegetable salt: an alternative to kitchen salt
Publication . Lima, Alexandre R.; Cristofoli, Nathana L.; Filippidis, Kyriakos; Barreira, Luísa; Vieira, Margarida
Waste of Salicornia ramosissima a halophyte plant used in gourmet cuisine, can be valorized after being dried and milled, becoming a vegetable salt, a healthier replacer of kitchen salt due to its lower sodium content (around 10-fold less) but still maintaining an intense salty taste. To study the shelf life of this vegetable salt from S. ramosissima, packed in a cylindrical aluminum box, an accelerated shelf-life testing (ASLT) was first carried out at 35, 40, 45, and 50 degrees C by monitoring color, moisture, and water activity (a(w)) throughout the storage period. Moisture and a(w) decreased at increasing temperature, but the color was not affected. The moisture sorption isotherms (MSIs) were next produced at 15, 25, 35, and 45 degrees C and relative humidity (RH: 6.5%-80%) using the static gravimetric method. Several mathematical models were tested to fit the MSI experimental data and finally the Oswin model was used to predict the moisture content. With this model, the isosteric heat was determined. A mass-balance model was used to predict shelf life and the equilibrium moisture content (M-e) during storage based on predetermined MSI and water vapor rate transmission (WVTR) data. The predicted shelf life of the package with and without adhesive tape around the lid was 35 and 80 days (25 degrees C, 75% RH) and 19 and 63 days (35 degrees C, 90% RH), respectively. Practical Applications By understanding the moisture sorption phenomenon in hygroscopic powders, this study can provide valuable data to the food industry dealing with such products. Being a microbiologically safe product due to its low a(w) and having color stabilized through previous drying, its mode of failure during storage proved to be the loss of its free-flowing capacity. A methodology to evaluate the shelf life of this hygroscopic product packed in a cylindrical aluminum box is described. There is a need to draw attention to the fact that, despite aluminum with a thickness of .23 mm is a very effective barrier to water vapor penetration, such package has an extremely small gap between the lid and body, which is hard to measure, yet allows water vapor to flow through the package at a rate that results in its shelf life being less than 3 months. Ways to overcome this issue are suggested.
UV-C light: a promising preservation technology for vegetable-based nonsolid food products
Publication . Tchonkouang, Rose Daphnee; Ribeiro Lima, Alexandre; Quintino, Andreia; Cristofoli, Nathana L.; Vieira, Margarida
A variety of bioactive substances present in fruit- and vegetable-processed products have health-promoting properties. The consumption of nutrient-rich plant-based products is essential to address undernutrition and micronutrient deficiencies. Preservation is paramount in manufacturing plant-based nonsolid foods such as juices, purees, and sauces. Thermal processing has been widely used to preserve fruit- and vegetable-based products by reducing enzymatic and microbial activities, thereby ensuring safety and prolonged shelf life. However, the nutritional value of products is compromised due to the deleterious effects of thermal treatments on essential nutrients and bioactive compounds. To prevent the loss of nutrients associated with thermal treatment, alternative technologies are being researched extensively. In studies conducted on nonsolid food, UV-C treatment has been proven to preserve quality and minimize nutrient degradation. This review compiles information on the use of UV-C technology in preserving the nutritional attributes of nonsolid foods derived from fruit and vegetables. The legislation, market potential, consumer acceptance, and limitations of UV-C are reviewed.
Comparative study of the production of cellulose nanofibers from agro-industrial waste streams of Salicornia ramosissima by acid and enzymatic treatment
Publication . Ribeiro Lima, Alexandre; Cristofoli, Nathana L.; Rosa Da Costa, Ana; Saraiva, Jorge A.; Vieira, Margarida
The study of the suitability of two isolation processes to produce cellulose nanofibers (CNFs) from Salicornia ramosissima waste, with potential applicability as a reinforcing agent of polymeric composites was carried out. To separate the cellulose fibrils from the cell wall and obtain CNFs an alkaline treatment was applied followed by a bleaching treat-ment and, the insoluble residue was next hydrolyzed by either an acid treatment (AT) or an enzyme treatment (ET). SEM and TEM images indicated fiber exposure caused by both treatments. The diameter, length, aspect ratio, and polydispersity index, were measured for both CNFs. CNF (ET) showed high zeta potential values suggesting that ET produces more electrically stable and thinner nanofibers. The FTIR spectra revealed that both treatments effectively removed the amorphous components allowing the CNFs isolation, and XRD patterns evidenced the increase in the degree of crystallinity of both CNFs. Nonetheless, CNF(AT) presented a lower mechanical resistance due to its smaller particle size, compared to the CNF(ET). In summary, the (ET) could successfully isolate CNFs from the Salicornia waste, encouraging the use of this treatment, once when compared to (AT), it does not generate toxic residues, presents mild thermal conditions, and produces CNFs with higher-value applications.
Advances in the food packaging production from Agri-Food waste and by-products: Market trends for a sustainable development
Publication . Cristofoli, Nathana L.; Ribeiro Lima, Alexandre; Tchonkouang, Rose Daphnee; Quintino, Andreia; Vieira, Margarida
Agricultural waste has been a prominent environmental concern due to its significant negative impact on the environment when it is incinerated, disposed of in landfills, or burned. These scenarios promoted innovations in the food packaging sector using renewable resources, namely agri-food waste and by-products such as bagasse, pulps, roots, shells, straws, and wastewater for the extraction and isolation of biopolymers that are later transformed into packaging materials such as bioplastics, biofilms, paper, and cardboards, among others. In this context, the circular bioeconomy (CBE) model is shown in the literature as a viable alternative for designing more sustainable production chains. Moreover, the biorefinery concept has been one of the main links between the agri-food chain and the food packaging industry. This review article aimed to compile recent advances in the food packaging field, presenting main industrial and scientific innovations, economic data, and the challenges the food packaging sector has faced in favor of sustainable development.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Funding Award Number
SFRH/BD/149398/2019