Loading...
Research Project
Untitled
Funder
Authors
Publications
Photochemistry of 1-and 2-Methyl-5-aminotetrazoles: structural effects on reaction pathways
Publication . Ismael, Amin; Fausto, R.; Cristiano, Maria Lurdes Santos
The influence of the position of the methyl substituent in 1- and 2-methyl-substituted 5-aminotetrazoles on the photochemistry of these molecules is evaluated. The two compounds were isolated in an argon matrix (15 K) and the matrix was subjected to in situ narrowband UV excitation at different wavelengths, which induce selectively photochemical transformations of different species (reactants and initially formed photoproducts). The progress of the reactions was followed by infrared spectroscopy, supported by quantum chemical calculations. It is shown that the photochemistries of the two isomers, 1-methyl-(1H)-tetrazole-5-amine (la) and 2-methyl-(2H)-tetrazole-5-amine (1b), although resulting in a common intermediate diazirine 3, which undergoes subsequent photoconversion into 1-amino-3-methylcarbodiimide (H2N-N=C=N-CH3), show marked differences: formation of the amino cyanamide 4 (H2N-N(CH3)-CE equivalent to N) is only observed from the photo cleavage of the isomer la, whereas formation of the nitrile imine 2 (H2N-C-=N+=N-CH3) is only obtained from photolysis of 1b. The exclusive formation of nitrile imine from the isomer lb points to the possibility that only the 2H-tetrazoles forms can give a direct access to nitrile imines, while observation of the amino cyanamide 4 represents a novel reaction pathway in the photochemistry of tetrazoles and seems to be characteristic of 1H-tetrazoles. The structural and vibrational characterization of both reactants and photoproducts has been undertaken.
New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum
Publication . Lobo, Lis; Cabral, Lília; Sena, Maria I.; Guerreiro, Bruno; Rodrigues, António S.; de Andrade-Neto, Valter F.; Cristiano, Maria Lurdes Santos; Nogueira, Fatima
Background:
The emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy in Southeast Asia prompted the need to develop new endoperoxide-type drugs.
Methods:
A chemically diverse library of endoperoxides was designed and synthesized. The compounds were screened for in vitro and in vivo anti-malarial activity using, respectively, the SYBR Green I assay and a mouse model. Ring survival and mature stage survival assays were performed against artemisinin-resistant and artemisinin-sensitive P. falciparum strains. Cytotoxicity was evaluated against mammalian cell lines V79 and HepG2, using the MTT assay.
Results:
The synthesis and anti-malarial activity of 21 new endoperoxide-derived compounds is reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a tetraoxane moiety, flanked by adamantane and a substituted cyclohexyl ring. Eight compounds exhibited sub-micromolar anti-malarial activity (IC50 0.3–71.1 nM), no cross-resistance with artemisinin or quinolone derivatives and negligible cytotoxicity towards mammalian cells. From these, six produced ring stage survival < 1% against the resistant strain IPC5202 and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral administration.
Conclusion:
The investigated, trioxolane–tetrazole conjugates LC131 and LC136 emerged as potential anti-malarial candidates; they show negligible toxicity towards mammalian cells, ability to kill intra-erythrocytic asexual stages of artemisinin-resistant P. falciparum and capacity to totally suppress P. berghei parasitaemia in mice.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/MAR-BIO/4132/2014