Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Decavanadate and metformin-decavanadate effects in human melanoma cells
Publication . de Sousa-Coelho, Ana Luísa; Aureliano, Manuel; Fraqueza, Gil; Serrão, Gisela; Gonçalves, João; Sánchez-Lombardo, Irma; Link, Wolfgang; Ferreira, Bibiana
Decavanadate is a polyoxometalate (POMs) that has shown extensive biological activities, including antidiabetic and anticancer activity. Importantly, vanadium-based compounds as well as antidiabetic biguanide drugs, such as metformin, have shown to exert therapeutic effects in melanoma. A combination of these agents, the metformin-decavanadate complex, was also recognized for its antidiabetic effects and recently described as a better treatment than the monotherapy with metformin enabling lower dosage in rodent models of diabetes. Herein, we compare the effects of decavanadate and metformin-decavanadate on Ca2+-ATPase activity in sarcoplasmic reticulum vesicles from rabbit skeletal muscles and on cell signaling events and viability in human melanoma cells. We show that unlike the decavanadate-mediated non-competitive mechanism, metformin-decavanadate inhibits Ca2+-ATPase by a mixed-type competitive-non-competitive inhibition with an IC50 value about 6 times higher (87 mu M) than the previously described for decavanadate (15 mu M). We also found that both decavanadate and metformin-decavanadate exert antiproliferative effects on melanoma cells at 10 times lower concentrations than monomeric vanadate. Western blot analysis revealed that both, decavanadate and metformin-decavanadate increased phosphorylation of extracellular signal-regulated kinase (ERK) and serine/ threonine protein kinase AKT signaling proteins upon 24 h drug exposure, suggesting that the anti-proliferative activities of these compounds act independent of growth-factor signaling pathways.
Tribbles gene expression profiles in colorectal cancer
Publication . Fernandes, Mónica T.; Yassuda, Victor; Bragança, José; Link, Wolfgang; Ferreira, Bibiana; De Sousa-Coelho, Ana Luísa
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
FOXO family isoforms
Publication . Santos, Bruno F; Grenho, Inês; Martel, Paulo; Ferreira, Bibiana; Link, Wolfgang
FOXO family of proteins are transcription factors involved in many physiological and pathological processes including cellular homeostasis, stem cell maintenance, cancer, metabolic, and cardiovascular diseases. Genetic evidence has been accumulating to suggest a prominent role of FOXOs in lifespan regulation in animal systems from hydra, C elegans, Drosophila, and mice. Together with the observation that FOXO3 is the second most replicated gene associated with extreme human longevity suggests that pharmacological targeting of FOXO proteins can be a promising approach to treat cancer and other age-related diseases and extend life and health span. However, due to the broad range of cellular functions of the FOXO family members FOXO1, 3, 4, and 6, isoform-specific targeting of FOXOs might lead to greater benefits and cause fewer side effects. Therefore, a deeper understanding of the common and specific features of these proteins as well as their redundant and specific functions in our cells represents the basis of specific targeting strategies. In this review, we provide an overview of the evolution, structure, function, and disease-relevance of each of the FOXO family members.
mTORC2 Is the major second layer kinase negatively regulating FOXO3 activity
Publication . Jimenez, Lucia; Amenabar, Carlos; Mayoral-Varo, Victor; Mackenzie, Thomas A.; Ramos, Maria C.; Silva, Andreia; Calissi, Giampaolo; Grenho, Inês; Blanco-Aparicio, Carmen; Pastor, Joaquin; Megías, Diego; Ferreira, Bibiana; Link, Wolfgang
Forkhead box O (FOXO) proteins are transcription factors involved in cancer and aging and their pharmacological manipulation could be beneficial for the treatment of cancer and healthy aging. FOXO proteins are mainly regulated by post-translational modifications including phosphorylation, acetylation and ubiquitination. As these modifications are reversible, activation and inactivation of FOXO factors is attainable through pharmacological treatment. One major regulatory input of FOXO signaling is mediated by protein kinases. Here, we use specific inhibitors against different kinases including PI3K, mTOR, MEK and ALK, and other receptor tyrosine kinases (RTKs) to determine their effect on FOXO3 activity. While we show that inhibition of PI3K efficiently drives FOXO3 into the cell nucleus, the dual PI3K/mTOR inhibitors dactolisib and PI-103 induce nuclear FOXO translocation more potently than the PI3Kδ inhibitor idelalisib. Furthermore, specific inhibition of mTOR kinase activity affecting both mTORC1 and mTORC2 potently induced nuclear translocation of FOXO3, while rapamycin, which specifically inhibits the mTORC1, failed to affect FOXO3. Interestingly, inhibition of the MAPK pathway had no effect on the localization of FOXO3 and upstream RTK inhibition only weakly induced nuclear FOXO3. We also measured the effect of the test compounds on the phosphorylation status of AKT, FOXO3 and ERK, on FOXO-dependent transcriptional activity and on the subcellular localization of other FOXO isoforms. We conclude that mTORC2 is the most important second layer kinase negatively regulating FOXO activity.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

PTDC/MED-ONC/4167/2020

ID