Repository logo
 
Loading...
Project Logo
Research Project

Smart Windows: energy production in buildings using renewable sources

Authors

Publications

Application of semi-circular double-skin facades in auditoriums in winter conditions
Publication . Conceição, Maria Inês; EZE, Conceicão; Lúcio, Maria Manuela Jacinto Do Rosário; Gomes, João; Awbi, Hazim
The DSF (double-skin facade) system is an important element in building design and is used in adjacent spaces to control the inlet solar radiation, heat the air, reduce energy consumption, decrease the acoustics levels, and produce photovoltaic energy, among other improvements. The DSF system can, for example, be used in winter conditions to heat the air, which is then transported to non-adjacent spaces to improve the thermal comfort level and the indoor air quality that the occupants are subjected to. Smooth DSF systems, which are a focus in the literature, are subjected to higher solar radiation levels at a specific hour of the day. The semi-circular DSF system used in this work, which was built from a group of smooth DSF systems with different orientations, guarantees the reception of the highest incident solar radiation throughout the entire day. This work presents a numerical study of a new DSF system, called the semi-circular DSF. The DSF system consists of a set of 25 smooth DSFs with different orientations, each one consisting of an outer glazed surface and an inner surface provided by the outer facade of the auditorium, both separated by an air channel. In this work, the influence of the radius of the semi-circular DSF system and the opening angle of the DSF system on the thermal response of the auditorium was analysed. Thus, six auditoriums were considered: two sets of three auditoriums with radii of 5 m and 15 m, with each of the auditoriums having a different DSF opening angle (45°, 90°, and 180°). It was found that the greater the radius of the semi-circular DSF and the opening angle of the DSF system, the greater the area of its glazed surface and, consequently, the greater the availability of solar heating power. Therefore, during the occupation period, only the set of auditoriums with the largest semi-circular DSF radius managed to present acceptable levels of thermal comfort, which were verified from mid-morning until late afternoon. As for the opening angle of the DSF system, the influence was not very significant, although slight improvements in thermal comfort were noted when the value of this angle was reduced (see Case F as an example) due to the corresponding decrease in the volume of indoor air to be heated. In all auditoriums (see Case A to Case F), it was verified that the indoor air quality was acceptable for the occupants, so the airflow rate was adequately promoted by the ventilation system.
Comparative study of a clean technology based on DSF use in occupied buildings for improving comfort in winter
Publication . EZE, Conceicão; Gomes, João; Lúcio, Maria Manuela Jacinto Do Rosário; Conceição, Maria Inês; Awbi, Hazim
This paper presents a comparative study of a clean technology based on a DSF (double skin facade) used in winter conditions in the occupied buildings comfort improvement, namely the thermal comfort and air quality. The performance of a solar DSF system, the building’s thermal response, the internal thermal comfort and the internal air quality are evaluated. In this study, a DSF system, an air transport system and a HVAC (heating, ventilating and air conditioning) system based on mixing ventilation are used. The study considers a virtual chamber occupied by eight persons and equipped, in the outside environment, by three DSFs. A new horary pre-programming control methodology is developed and applied when the airflow rate is constant and the number of DSFs to operate is variable, when the airflow rate is variable and the number of DSFs to operate is constant and when the airflow rate is variable and the number of DSFs to operate is variable. This work uses a numerical model that simulates the integral building thermal behavior and an integral human thermal response. The internal air, provided by a mixing ventilating system, is warmed using the DSF system. The air temperature inside the DSF system and the virtual chamber, the thermal comfort level using the PMV index, the internal air quality using the carbon dioxide concentration and the uncomfortable hours are calculated for winter conditions. The results obtained show that the energy produced in the DSF, using solar radiation, guarantees acceptable thermal comfort conditions in the morning and in the afternoon. The indoor air quality obtained at the breathing level is acceptable. It is found that the airflow rate to be used is more decisive than the DSF operating methodology. However, when a solution is chosen that combines a ventilation rate with the number of DSF to operate, both variables throughout the day can obtain simultaneously better results for indoor air quality and thermal comfort according to the standards.
Energy production of solar DSF for ceiling-mounted localized air distribution systems in a virtual classroom
Publication . Conceição, Eusébio; Gomes, João; Lúcio, Maria Manuela; Awbi, Hazim
This paper presents an application of energy production in a solar Double Skin Facade (DSF) used in a Heating, Ventilation and Air-Conditioning (HVAC) system for a ceiling-mounted localized air distribution systems in a virtual classroom. In this numerical work, a virtual classroom, an inlet ceiling-mounted localized air distribution system, an exhaust ventilation system, and a DSF system are considered. The numerical simulations consider an integral building thermal response (BTR) and a coupling of an integral human thermal-physiology response (HTR) and differential computational fluid dynamics (CFD). The BTR numerical model calculates, among other parameters, the DSF indoor air temperature and energy production. The HTR numerical model calculates, among other parameters, the human thermal comfort. The CFD numerical model, among other parameters, calculates the indoor air quality. In this study which is performed for winter conditions, the energy produced in the DSF is used for driving the HVAC system. Six different airflow rates are used. The air temperature and energy production in the DSF are also evaluated. The influence of the airflow rate on the HVAC system performance is evaluated by the Air Distribution Index for mid-morning and mid-afternoon conditions. The results show that energy production reduces when the airflow increases and the operating point can be selected using the acceptable levels of thermal comfort and air quality levels or using the maximum Air Distribution Index value. In this study, the application of the thermal comfort and air quality levels criteria demonstrates that the HVAC system uses an optimum airflow rate.
The application of UAVs in the evaluation of thermal comfort levels in buildings equipped with internal greenhouses
Publication . Conceição, Maria Inês; Conceição, Eusébio; Grilo, António; Basiri, Meysam; Awbi, Hazim
A greenhouse is used to improve thermal comfort (TC) levels for its occupants in winter conditions using solar radiation, which involves low energy consumption. The aim of this research is the application of unmanned aerial vehicles (UAVs) in the evaluation of thermal comfort levels in buildings equipped with internal greenhouses. The new building design is developed numerically, and a building thermal simulator (BTS) numerical model calculates the indoor environmental variables. A new alternative and expeditious method to measure occupants’ comfort levels using UAV technology is applied using a UAV dynamic simulator (UAV DS). The evolution of the measured variables used for evaluating the predicted mean vote (PMV) is compared using the two numerical methodologies: BTS and UAV DS. In the second one, the mean radiant temperature (MRT) measuring methodology, the floor temperature, the lateral walls’ temperatures, the ceiling temperatures, and the air temperature are applied. In the method presented in this paper, a new building design is developed numerically, which includes a central greenhouse equipped with a semispherical dome, four auditoriums distributed around the central greenhouse, occupant distribution, and a ventilation methodology. The building geometry, the solar radiation on transparent surfaces, the TC, and the UAV mission methods are presented. The results show that, in general, the central greenhouse and the ventilation methodologies provide acceptable TC levels. The UAV monitoring mission, which includes two vehicles, provides good environmental variable replication, particularly when the environmental variables present greater variations. In the auditorium and greenhouse, the ceiling and lateral surface temperatures, respectively, can be used as an MRT approximation. The BTS numerical model is also important for developing buildings using renewable energy sources to improve the TC levels.
Modelling of indoor air quality and thermal comfort in passive buildings subjected to external warm climate conditions
Publication . Conceição, Eusébio; Gomes, João; Conceição, Maria Inês; Conceição, Margarida; Lúcio, Maria Manuela Jacinto do Rosário; Awbi, Hazim
Air renewal rate is an important parameter for both indoor air quality and thermal comfort. However, to improve indoor thermal comfort, the air renewal rate to be used, in general, will depend on the outdoor air temperature values. This article presents the modelling of indoor air quality and thermal comfort for occupants of a passive building subject to a climate with warm conditions. The ventilation and shading strategies implemented for the interior spaces are then considered, as well as the use of an underground space for storing cooled air. The indoor air quality is evaluated using the carbon dioxide concentration, and thermal comfort is evaluated using the Predicted Mean Vote index. The geometry of the passive building, with complex topology, is generated using a numerical model. The simulation is performed by Building Thermal Response software, considering the building's geometry and materials, ventilation, and occupancy, among others. The building studied is a circular auditorium. The auditorium is divided into four semi-circular auditoriums and a central circular space, with vertical glazed windows and horizontal shading devices on its entire outer surface. Typical summer conditions existing in a Mediterranean-type environment were considered. In this work, two cases were simulated: in Case 1, the occupation is verified in the central space and the four semi-circular auditoriums and all spaces are considered as one; in Case 2, the occupation is verified only in each semi-circular auditorium and each one works independently. For both cases, three strategies were applied: A, without shading and geothermal devices; B, with a geothermal device and without a shading device; and C, with both shading and geothermal devices. The airflow rate contributes to improving indoor air quality throughout the day and thermal comfort for occupants, especially in the morning. The geothermal and shading devices improve the thermal comfort level, mainly in the afternoon.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

9471 - RIDTI

Funding Award Number

SAICT-ALG/39586/2018

ID