Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Partial safety factors for prestressed concrete girders 2 strengthened with CFRP laminates
Publication . Dias-da-Costa, D.; Neves, L. A. C.; Gomes, S.; Graça-e-Costa, R.; Hadigheh, S. A.; Fernandes, P.
This paper provides a framework for the calibration of partial safety factors in prestressed concrete (PC) girders strengthened in flexure with carbon fiber-reinforced polymer (CFRP) laminates. A hybrid approach was proposed to take advantage of comprehensive nonlinear numerical models in reliability analysis using a first-order reliability method (FORM) in conjunction with the response surface method (RSM). The PC girders selected for analyses were taken from real structures designed and built in the 1980s based on old standards that now require strengthening and upgrade due to partial corrosion of the prestressing strands. Using the proposed approach, a sensitivity analysis was performed to identify the most relevant variables and assess the area of CFRP laminates needed to restore capacity up to new design standards. A partial safety factor was proposed for strengthening PC girders using CFRP laminates. Sensitivity analysis showed that traffic loads and model uncertainties are the most important variables for calibration. (C) 2019 American Society of Civil Engineers.
Numerical modeling of concrete beams under serviceability conditions with a discrete crack approach and noniterative solution-finding algorithms
Publication . Dias-da-Costa, Daniel; do Carmo, Ricardo N. F.; Graça-e-Costa, R.
This paper describes the development and validation of a comprehensive numerical model enabling the simulation of reinforced concrete beams under serviceability conditions using a discrete crack approach. The highly nonlinear behavior introduced by the different material models and the many localized cracks propagating within the member pose a challenge to classic iterative solvers, which often fail to converge. This limitation is solved using a noniterative solution-finding algorithm to overcome critical bifurcation points. The finite element model was validated using experimental data on lightweight aggregate concrete beams under flexural loading. It was shown that the model properly simulates both the overall and localized features of the structural response, including curvature, crack openings, and crack patterns. The model was used to carry out a numerical study of the role of longitudinal reinforcement ratios and crack widths in reinforced concrete beams. It was observed that the total crack openings along a member seem to remain nearly independent of the tensile reinforcement for ratios >2.5% and the same level of strength.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

5876

Funding Award Number

UID/ECI/04029/2013

ID