Loading...
Research Project
Marine Forests of animals, plants and algae: nature-based tools to protect and restore biodiversity
Funder
Authors
Publications
Less is more: seagrass restoration success using less vegetation per area
Publication . Mourato, Carolina; Padrão, Nuno; Serrao, Ester A.; Paulo, Diogo
Seagrass restoration in open coast environments presents unique challenges. Traditional sod transplant designs, though relatively successful in these environments, are impractical for large-scale restoration due to high biomass requirements. Here, we develop the checkers design, which aims to optimise the usage of biomass by transplanting fewer sods in a checkerboard pattern. We established six plots (9 m2 each) for each species (Zostera marina and Zostera noltei), with 25 sods in each plot. The area, percent cover, density, and leaf length were measured at 1, 6, and 12 months. The plots located on the seaward end of the transplant design vanished over the winter, suggesting location-dependent survival influenced by winter storms. Nevertheless, both species exhibited increased percentages of cover, density, and vegetated area after one year, with variations between species. Z. noltei showed a slower expansion but greater resilience to winter, while Z. marina displayed a higher density and cover over the first 6 months but experienced area loss during the winter. Despite these differences, both species survived and increased vegetated areas after one year, indicating the viability and promise of the checkers method for large-scale restoration. However, careful consideration of location or storm-mitigating measures is essential for the successful implementation of this method.
A dataset of cold-water coral distribution records
Publication . Balogh, Viktória; Fragkopoulou, Eliza; Serrao, Ester; Assis, Jorge
Species distribution data are key for monitoring present and future biodiversity patterns and informing conservation and management strategies. Large biodiversity information facilities often contain spatial and taxonomic errors that reduce the quality of the provided data. Moreover, datasets are frequently shared in varying formats, inhibiting proper integration and interoperability. Here, we provide a qualitycontrolled dataset of the diversity and distribution of coldwater corals, which provide key ecosystem services and are considered vulnerable to human activities and climate change effects. We use the common term cold-water corals to refer to species of the orders Alcyonacea, Antipatharia, Pennatulacea, Scleractinia, Zoantharia of the subphylum Anthozoa, and order Anthoathecata of the class Hydrozoa. Distribution records were collated from multiple sources, standardized using the Darwin Core Standard, dereplicated, taxonomically corrected and flagged for potential vertical and geographic distribution errors based on peer-reviewed published literature and expert consulting. This resulted in 817,559 quality-controlled records of 1,170 accepted species of cold-water corals, openly available under the FAIR principle of Findability, Accessibility, Interoperability and Reusability of data. The dataset represents the most updated baseline for the global cold-water coral diversity, and it can be used by the broad scientific community to provide insights into biodiversity patterns and their drivers, identify regions of high biodiversity and endemicity, and project potential re-distribution under future climate change. It can also be used by managers and stakeholders to guide biodiversity conser-vation and prioritization actions against biodiversity loss. (c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Past climate-driven range shifts structuring intraspecific biodiversity levels of the giant kelp (Macrocystis pyrifera) at global scales
Publication . Assis, Jorge; Alberto, Filipe; Macaya, Erasmo C.; Coelho, Nelson; Faugeron, Sylvain; Pearson, Gareth; Ladah, Lydia; Reed, Daniel C.; Raimondi, Peter; Mansilla, Andrés; Brickle, Paul; Zuccarello, Giuseppe C.; Serrao, Ester
The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species' population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution of Macrocystis pyrifera is composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following similar to 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.
Unravelling the role of oceanographic connectivity in the distribution of genetic diversity of marine forests at the global scale
Publication . Legrand, Térence; Fragkopoulou, Eliza; Gouvêa, Lidiane; Serrao, Ester A.; Assis, Jorge; Vapillon, Lauren
Aim
Genetic diversity of marine forests results from complex interactions of eco-evolutionary processes. Among them, oceanographic connectivity driven by dispersal through water transport is hypothesized to play a pivotal role, yet its relative contribution has not been addressed at the global scale. Here, we test how present-day oceanographic connectivity is correlated with the distribution of genetic diversity of marine forests across the ocean.
Location
Global.
Time period
Contemporary.
Major taxa studied
Marine forests of brown macroalgae (order: Fucales, Ishigeales, Laminariales and Tilopteridales).
Methods
Through literature review, we compiled a comprehensive dataset of genetic differentiation, encompassing 699 populations of 30 species. A biophysical model coupled with network analyses estimated multigenerational oceanographic connectivity and centrality across the marine forest global distribution. This approach integrated propagule dispersive capacity and long-distance dispersal events. Linear mixed models tested the relative contribution of site-specific processes, connectivity and centrality in explaining genetic differentiation.
Results
We show that spatiality-dependent eco-evolutionary processes, as described by our models, are prominent drivers of genetic differentiation in marine forests (significant models in 91.43% of the cases with an average R2 of 0.50 ± 0.07). Specifically, we reveal that 18.7% of genetic differentiation variance is explicitly induced by predicted contemporary connectivity and centrality. Moreover, we demonstrate that long-distance dispersal is key in connecting populations of species distributed across large water masses and continents.
Main conclusions
Our findings highlight the role of present-day oceanographic connectivity in shaping the extant distribution of genetic diversity of marine forests on a global scale, with significant implications for biogeography and evolution. This understanding can pave the way for future research aimed at guiding conservation efforts, including the designation of well-connected marine protected areas, which is particularly relevant for sessile ecosystems structuring species such as brown macroalgae.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
DivRestore/0013/2020