Loading...
Research Project
Untitled
Funder
Authors
Publications
Vertical intertidal variation of organic matter stocks and patterns of sediment deposition in a mesotidal coastal wetland
Publication . de los Santos, Carmen B.; Lahuna, François; Silva, André; Freitas, Cátia; Martins, Márcio; Carrasco, A. Rita; Santos, Rui
Tidal coastal wetlands, common home to seagrass and salt marshes, are relevant carbon sinks due to their high
capacity to accumulate and store organic carbon in their sediments. Recent studies demonstrated that the spatial
variability of this organic carbon within the same wetland system can be significant. Some of the environmental
drivers of this spatial variability remain understudied and the selection of the most relevant ones can be context
dependent. Here we investigated the role of bed elevation, hydrodynamics, and habitat type (salt marsh and
seagrass) on the organic matter (OM) net deposition-resuspension rate and superficial sedimentary stocks (top 5
cm) at the tidal wetlands of the Ria Formosa, a mesotidal coastal lagoon in South Portugal. Results showed that
two vectors of spatial variation need to be considered to describe the intertidal sedimentary OM stocks: the bed
elevation that imposes a decrease of the hydroperiod and thus the change of habitat from the lower seagrass
Z. noltei to the upper saltmarsh S. maritimus, and the horizontal spatial variation along the secondary channels of
the lagoon that imposes a decrease in the current flow velocity magnitude. The multiple linear regression analyses, using data from 40 sampling points, explained 59% of the variation of the superficial sedimentary stocks
of OM in salt marshes and seagrasses of the Ria Formosa lagoon and revealed that stocks generally decrease with
elevation, yet with variation among sites and habitats. It was also found that the decrease of the OM net
deposition-resuspension rate with bed elevation was exponential. Our study emphasizes the importance of
considering multiple environmental drivers and spatial variation for regional estimations of organic matter (and
organic carbon) sedimentary stocks in coastal wetlands.
Carbon and nitrogen stocks and burial rates in intertidal vegetated habitats of a Mesotidal coastal lagoon
Publication . Martins, Márcio; de los Santos, Carmen B.; Masqué, Pere; Carrasco, A. Rita; C. Veiga-Pires, C.; Santos, Rui
Coastal vegetated ecosystems such as saltmarshes
and seagrasses are important sinks of organic carbon (OC) and total nitrogen (TN), with large global
and local variability, driven by the confluence of
many physical and ecological factors. Here we
show that sedimentary OC and TN stocks of intertidal saltmarsh (Sporobolus maritimus) and seagrass
(Zostera noltei) habitats increased between two- and
fourfold along a decreasing flow velocity gradient
in Ria Formosa lagoon (south Portugal). A similar
twofold increase was also observed for OC and TN
burial rates of S. maritimus and of almost one order
of magnitude for Z. noltei. Stable isotope mixing models identify allochthonous particulate organic
matter as the main source to the sedimentary pools
in both habitats (39–68%). This is the second estimate of OC stocks and the first of OC burial rates in
Z. noltei, a small, fast-growing species that is widely
distributed in Europe (41,000 ha) and which area is
presently expanding (8600 ha in 2000s). Its wide
range of OC stocks (29–99 Mg ha-1
) and burial
rates (15–122 g m2 y-1
) observed in Ria Formosa
highlight the importance of investigating the drivers of such variability to develop global blue carbon models. The TN stocks (7–11 Mg ha-1
) and
burial rates (2–4 g m-2 y-1
) of Z. noltei were generally higher than seagrasses elsewhere. The OC
and TN stocks (29–101 and 3–11 Mg ha-1
, respectively) and burial rates (19–39 and 3–5 g m-2 y-1
)
in S. maritimus saltmarshes are generally lower than
those located in estuaries subjected to larger accumulation of terrestrial organic matter.
Influence of seagrass meadows on nursery and fish provisioning ecosystem services delivered by Ria Formosa, a coastal lagoon in Portugal
Publication . Erzini, Karim; Parreira, Filipe; Sadat, Zineb; Castro, Margarida; Bentes, Luis; Coelho, Rui; Gonçalves, Jorge Manuel Santos; Lino, Pedro G.; Martínez-Crego, Begoña; Monteiro, Pedro; Oliveira, Frederico; Ribeiro, Joaquim; de los Santos, Carmen B.; Santos, Rui
This study is the first to evaluate the fish provisioning services of a whole transitional landscape (Ria Formosa lagoon, Portugal), in parallel with the enhancement of growth, survival and production of single cohorts of the most important commercial fish species by vegetated and unvegetated sub-tidal habitats. Based on monthly beach seine samples, total density and biomass of 96 species of fishes were 1.89 and 3.03 times greater in vegetated habitats than unvegetated habitats, respectively. Vegetated habitat enhanced survival in six of eight commercial species for which survival could be estimated in both habitats. The total production of all 12 commercially important species within vegetated habitat was approximately double that of unvegetated habitat, with production enhancement in 7 of 12 species ranging from 1.8 to 169-fold for the vegetated habitats. Within the lagoon, vegetated sub-tidal habitat covers an area 5-fold smaller than unvegetated habitat, yet it accounts for 27.1 % of fish production. Estimated total lifetime economic values of the single cohorts of the 12 commercial species were between 30 million and 59 million EUR. An exceptionally strong year class of the European seabass (Dicentrarchus labrax), a species with higher density and biomass in unvegetated habitat, accounts for the higher overall values per hectare for unvegetated habitat (Low natural mortality (M): EUR 32,844 ha-1; High M: EUR 16,751 ha-1) than for vegetated habitat (Low M: EUR 22,028 ha-1; High M: EUR 10,700 ha-1). These results highlight the enormous importance of temperate coastal lagoons as a nursery and source of recruits for coastal fisheries. Our evaluation of fish provisioning services based on data for individual cohorts of fish for a whole transitional landscape is a stronger and more valid approach for estimating future biomass and value than previous studies based on mean densities and biomasses of fish that did not distinguish between cohorts.
Competition for nitrogen between the seaweed Caulerpa prolifera and the seagrass Cymodocea nodosa
Publication . Alexandre, Ana; Santos, Rui
The rhizophytic seaweed Caulerpa prolifera has been expanding rapidly in the Ria Formosa lagoon, southern Portugal, taking over deeper unvegetated areas and mixing with the native seagrass Cymodocea nodosa in shallower areas. In the Ria Formosa lagoon, belowground ammonium uptake from the sediment represents the main source of nitrogen for the 2 macrophytes, except during the ammonium pulses from the sediment to the water column that are incorporated through aboveground plant parts. We examined the competition for inorganic and organic nitrogen between C. prolifera and C. nodosa through a series of N-15-ammonium and N-15-amino acid surge uptake experiments combining single-species and mixed incubations at a range of nutrient concentrations. Our results showed that C. prolifera is generally faster than C. nodosa in the acquisition of ammonium and amino acids by both above- and belowground parts, and that the uptake rates of ammonium and amino acids of one species were not affected by the presence of the other species. The exception was the amino acid uptake through the rhizoids of C. prolifera, which was slightly enhanced in the presence of C. nodosa. In this situation, the aboveground ammonium uptake becomes the main contributor to the nitrogen budget of C. nodosa but not to that of C. prolifera. When ammonium pulses are considered, C. nodosa is more competitive for nitrogen than C. prolifera. In this case, the leaf uptake of ammonium is the largest contributor to the total nitrogen (ammonium plus amino acids) budget of the seagrass. Our results showed that the different nutritional strategies of the 2 macrophytes allow their coexistence in the Ria Formosa lagoon.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/MAR-EST/3223/2014