Repository logo
 
Loading...
Project Logo
Research Project

Not Available

Authors

Publications

Engineered metal nanoparticles in the marine environment: A review of the effects on marine fauna
Publication . Roma, Joana; Matos, Ana Rita; Vinagre, Catarina; Duarte, Bernardo
There is an increasing awareness of how damaging pollutants in the marine environment can be, however information on the effects of metal engineered nanoparticles (ENPs) on marine biota is still insufficient, despite an exponential rising in related publications in recent years. In order to provide an integrated insight on the present state of the art on metal ENP-related ecotoxicology studies on marine fauna, this review aimed to: (i) highlight the means of toxicity of metal ENPs in the marine environment, (ii) identify the principal biotic and abiotic factors that may alter metal ENP toxicity, and (iii) analyse and categorize results of these studies, including accumulation, molecular and histological biomarkers, genotoxicity and behavioural changes. Data retrieved from Scopus yielded 134 studies that met pre-established criteria. Most often, the target ENPs were titanium, zinc, copper or silver, and most studies (61.2%) focused on the phylum Mollusca. The degree of toxicity of metal ENPs was often dependent on the concentrations tested, length of exposure and the type of tissue sampled. Effects from simple tissue accumulation to DNA damage or behavioural alterations were identified, even when concentrations below environmentally available levels were used. It is proposed that other phyla besides the traditional Mollusca (and within it Bivalvia) should be used more often in this kind of studies, that exact pathways of toxicity be further explored, and lastly that co-stressors be used in order to best mimic conditions observed in nature. In this review, the current knowledge on engineered metal nanoparticles and their effects on marine fauna was summarized, highlighting present knowledge gaps. Guidelines for future studies focusing on under-developed subjects in ENP toxicology are also briefly provided.
Gymnodinium catenatum paralytic Shellfish toxin production and photobiological responses under marine heat waves
Publication . Lopes, Vanessa M.; Court, Mélanie; Seco, Martim Costa; Borges, Francisco O.; Vicente, Bernardo; Lage, Sandra; Braga, Ana Catarina; Duarte, Bernardo; Santos, Catarina Frazão; Amorim, Ana; Reis Costa, Pedro; Rosa, Rui
Marine heatwaves (MHWs) have doubled in frequency since the 1980s and are projected to be exacerbated during this century. MHWs have been shown to trigger harmful algal blooms (HABs), with severe consequences to marine life and human populations. Within this context, this study aims to understand, for the first time, how MHWs impact key biological and toxicological parameters of the paralytic shellfish toxin (PST) producer Gymnodinium catenatum, a dinoflagellate inhabiting temperate and tropical coastal waters. Two MHW were simulated—category I (i.e., peak: 19.9 ◦C) and category IV (i.e., peak: 24.1 ◦C)—relative to the estimated baseline in the western coast of Portugal (18.5 ◦C). No significant changes in abundance, size, and photosynthetic efficiency were observed among treatments. On the other hand, chain-formation was significantly reduced under category IV MHW, as was PSP toxicity and production of some PST compounds. Overall, this suggests that G. catenatum may have a high tolerance to MHWs. Nevertheless, some sublethal effects may have occurred since chain-formation was affected, suggesting that these growth conditions may be sub-optimal for this population. Our study suggests that the increase in frequency, intensity, and duration of MHWs may lead to reduced severity of G. catenatum blooms.
Editorial: Emerging topics in coastal and transitional ecosystems: science, literacy, and innovation
Publication . Duarte, Bernardo; Teixeira, Célia M.; Martins, Irene; Engelen, Aschwin; Costa, Raquel L.; Adams, Janine Barbara; Bebianno, Maria João; Melo, Ricardo A.; Fonseca, Vanessa F.
Marine coastal and transitional ecosystems are facing increasing impacts, and often reflect the most immediate effects of environmental change, habitat destruction, and biodiversity loss. With over half of the population currently living in coastal areas, these areas are of interest for multiple uses and resources, as well as subjected to multiple stressors and associated impacts derived from local and upstream anthropogenic activities. The challenges coastal and transitional ecosystems now face is not new and have far-reaching implications for the ocean (Borja et al.). Nevertheless, significant knowledge gaps on their functioning and structure still exist and new solutions or approaches to this old problem are still needed, from blue biotechnological innovations to improved ocean literacy (Borja et al.). This Research Topic aimed to contribute to the sustainability of coastal and transitional environments, providing a broad overview of ecosystem resources and functioning, assessment and monitoring tools, restoration, biotechnology, and ocean literacy. A growing human population has also increased the reliance on the sea for food and feed resources. Despite soaring demand, the management of seafood resources is still hampered by key knowledge gaps on many life-history traits of target species as well as on ecosystem’s functioning (Golden et al., 2021). From tropical regions, where mangroves function as nursery habitats for various crustaceans and fish species, contributing to maintaining adjacent marine stocks, a poorly studied system on Príncipe Island, Gulf of Guinea, evidenced the importance of seasonality and mangrove zone on fish assemblages (Cravo et al.). In the deep sea, a particular challenge to commercial exploitation of fish species is how changing environmental conditions affect these organisms, which are generally characterized by high longevity, late reproduction, and low fecundity.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

CEEC IND 2017

Funding Award Number

CEECIND/00511/2017/CP1387/CT0039

ID