Loading...
Research Project
Understanding the hydrography and productivity variability during the beginning of Mid-Pleistocene Transition on the SW Portuguese Margin
Funder
Authors
Publications
delta O-18 and Mg/Ca thermometry in planktonic foraminifera: a multiproxy approach toward tracing oastal upwelling dynamics
Publication . Salgueiro, Emilia; H L Voelker, Antje; Martin, P. A.; Rodrigues, Teresa; Zuniga, D.; Frojan, M.; de la Granda, F.; Villacieros-Robineau, N.; Alonso-Perez, F.; Alberto, A.; Rebotim, A.; Gonzalez-Alvarez, R.; Castro, C. G.; Abrantes, Fatima
Planktonic foraminifera delta O-18 and Mg/Ca ratios are widely considered as a powerful proxy to reconstruct past seawater-column temperature. Due to the complex interpretation of planktonic foraminifera delta O-18 data in regard to past seawater temperatures, temperature determination based on the foraminifera shell Mg/Ca ratio is believed to be more accurate. Scarce Mg/Ca calibration data exists for coastal upwelling regions, resulting in incoherent results of past seawater reconstructions. The current study along the NW Iberia coastal upwelling system intends to define the best Mg/Ca temperature equation for the most representative species of this region (Neogloboquadrina incompta, Globigerina bulloides, and Globorotalia inflata). Seawater temperature from delta O-18 and Mg/Ca of these three planktonic foraminifera species was compared with the surface sediments alkenone derived SST and with the in situ temperatures measured at the depths where these foraminifera species currently live and calcify. The equations that better reflect each species calcification depth were selected as our regional equations for delta O-18 and Mg/Ca temperature reconstructions. The delta O-18-estimated temperatures for surface sediment specimens were comparable with in situ seawater-column temperature measurements, whereas the Mg/Ca derived temperatures seem to underestimate in situ values, in special for G. bulloides from samples affected by stronger coastal upwelling. The G. bulloides delta O-18 and Mg/Ca estimated temperatures from samples located offshore, further from coastal upwelling influence, are comparable to surface sediment alkenone derived temperatures. Our study shows that in upwelling areas, regional calibration of planktonic foraminifera Mg/Ca temperature equations is necessary for reliable interpretations of high-resolution past temperature variability in these important environments.
Particle fluxes in the NW Iberian coastal upwelling system: Hydrodynamical and biological control
Publication . Zuniga, D.; Villacieros-Robineau, N.; Salgueiro, Emilia; Alonso-Perez, F.; Roson, G.; Abrantes, Fatima; Castro, C. G.
To better understand sources and transport of particulate material in the NW Iberian coastal upwelling system, a mooring line dotted with an automated PPS 4/3 sediment trap was deployed off Cape Silleiro at the base of the photic zone. The samples were collected from November 2008 through June 2012 over sampling periods of 4-12 days.Our study represents the first automated sediment trap database for the NW Iberian margin. The magnitude and composition of the settling material showed strong seasonal variability with the highest fluxes during the poleward and winter mixing periods (averages of 12.9 +/- 9.6 g m(-2) d(-1) and 5.6 +/- 5.6 g m(-2) d(-1) respectively), and comparatively lower fluxes (3.6 +/- 4.1 gm(-2) d(-1)) for the upwelling season. Intensive deposition events registered during poleward and winter mixing periods were dominated by the lithogenic fraction (80 +/- 3%). They were associated to high energy wave-driven re suspension processes, due to the occurrence of south-westerly storms, and intense riverine inputs of terrestrial material from Minho and Douro rivers.On the other hand, during the spring- summer upwelling season, the share of biogenic compounds (organic matter, calcium carbonate (CaCO3), biogenic silica (bSiO2)) to downward fluxes was higher, reflecting an increase in pelagic sedimentation due to the seasonal intensification of primary production and negligible river inputs and wave-driven resuspended material. Otherwise, the large variations of biogenic settling particles were mainly modulated by upwelling intensity, which by means of upwelling filaments ultimately controlled the offshore transport of the organic carbon fixed by primary producers towards the adjacent ocean. Based on the average downward flux of organic carbon (212 mg C m(-2) d(-1)) and considering an average primary production of 1013 mg C m(-2) d(-1) from literature, we estimated that about 21% of the fixed carbon is vertically exported during the upwelling season. (C) 2016 Elsevier Ltd. All rights reserved.
Ocean kinetic energy and photosynthetic biomass are important drivers of planktonic foraminifera diversity in the Atlantic Ocean
Publication . Rufino, Marta M.; Salgueiro, Emilia; H L Voelker, Antje; Polito, Paulo S.; Cermeño, Pedro A.; Abrantes, Fatima
To assess the anthropogenic effect on biodiversity, it is essential to understand the global diversity distribution of the major groups at the base of the food chain, ideally before global warming initiation (1850 Common Era CE). Since organisms in the plankton are highly interconnected and carbonate synthesizing species have a good preservation state in the Atlantic Ocean, the diversity distribution pattern of planktonic foraminifera from 1741 core-top surface sediment samples (expanded ForCenS database) provides a case study to comprehend centennial to decadal time-averaged diversity patterns at pre-1970 CE times, the tempo of the substantial increase in tropospheric warming. In this work, it is hypothesized and tested for the first time, that the large-scale diversity patterns of foraminifera communities are determined by sea surface temperature (SST, representing energy), Chl-a (a surrogate for photosynthetic biomass), and ocean kinetic energy (as EKE). Alpha diversity was estimated using species richness (S), Shannon Wiener index (H), and Simpson evenness (E), and mapped using geostatistical approaches. The three indices are significantly related to SST, Chl-a, and EKE (71-88% of the deviance in the generalized additive mixed model, including a spatial component). Beta diversity was studied through species turnover using gradient forest analysis (59% of the variation). The primary community thresholds of foraminifera species turnover were associated with 5-10 degrees C and 22-28 degrees C SST, 0.05-0.15 mg m-(3) Chl-a, and 1.2-2.0 cm(2) s-(2) log10 EKE energy, respectively. Six of the most important foraminifera species identified for the environmental thresholds of beta diversity are also fundamental in transfer functions, further reinforcing the approaches used. The geographic location of the transition between the four main biogeographic zones was redefined based on the results of beta diversity analysis and incorporating the new datasets, identifying the major marine latitudinal gradients, the most important upwelling areas (Benguela Current, Canary Current), the Equatorial divergence, and the subtropical fronts (Gulf Stream-North Atlantic Drift path in the north, and the South Atlantic current in the south). In conclusion, we provide statistical proof that energy (SST), food supply (Chl-a), and currents (EKE) are the main environmental drivers shaping planktonic foraminifera diversity in the Atlantic ocean and define the associated thresholds for species change on those variables.
Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)
Publication . Zuniga, Diana; Santos, Célia; Frojan, Maria; Salgueiro, Emilia; Rufino, Marta; De la Granda, Francisco; Figueiras, Francisco G.; Castro, Carmen G.; Abrantes, Fatima
The objective of the current work is to improve our understanding of how water column diatom's abundance and assemblage composition is seasonally transferred from the photic zone to seafloor sediments. To address this, we used a dataset derived from water column, sediment trap and surface sediment samples recovered in the NW Iberian coastal upwelling system. Diatom fluxes (2.2 (+/- 5.6) 10(6) valves m(-2) d(-1)) represented the majority of the siliceous microorganisms sinking out from the photic zone during all studied years and showed seasonal variability. Contrasting results between water column and sediment trap diatom abundances were found during downwelling periods, as shown by the unexpectedly high diatom export signals when diatom- derived primary production achieved their minimum levels. They were principally related to surface sediment remobilization and intense Minho and Douro river discharge that constitute an additional source of particulate matter to the inner continental shelf. In fact, contributions of allochthonous particles to the sinking material were confirmed by the significant increase of both benthic and freshwater diatoms in the sediment trap assemblage. In contrast, we found that most of the living diatom species blooming during highly productive upwelling periods were dissolved during sinking, and only those resistant to dissolution and the Chaetoceros and Leptocylindrus spp. resting spores were susceptible to being exported and buried. Fur-thermore, Chaetoceros spp. dominate during spring-early summer, when persistent northerly winds lead to the upwelling of nutrient-rich waters on the shelf, while Leptocylindrus spp. appear associated with late-summer upwelling relaxation, characterized by water column stratification and nutrient depletion. These findings evidence that the contributions of these diatom genera to the sediment's total marine diatom assemblage should allow for the reconstruction of different past upwelling regimes.
Holocene climate variability of the Western Mediterranean: surface water dynamics inferred from calcareous plankton assemblages
Publication . Bazzicalupo, Pietro; Maiorano, Patrizia; Girone, Angela; Marino, Maria; Combourieu-Nebout, Nathalie; Pelosi, Nicola; Salgueiro, Emilia; Incarbona, Alessandro
A high-resolution study (centennial scale) has been performed on the calcareous plankton assemblage of the Holocene portion of the Ocean Drilling Program Site 976 (Alboran Sea) with the aim to identify the main changes in the surface water dynamic. The dataset also provided a seasonal foraminiferal sea surface water temperatures (SSTs), estimated using the modern analog technique SIMMAX 28, and it was compared with available geochemical and pollen data at the site. Three main climate shifts were identified as (1) the increase in abundance of Syracosphaera spp. and Turborotalita quinqueloba marks the early Holocene humid phase, during maximum summer insolation and enhanced river runoff. It is concomitant with the expansion of Quercus, supporting high humidity on land. It ends at 8.2 ka, registering a sudden temperature and humidity reduction; (2) the rise in the abundances of Florisphaera profunda and Globorotalia inflata, at ca. 8 ka, indicates the development of the modern geostrophic front, gyre circulation, and of a deep nutricline following the sea-level rise; and (3) the increase of small Gephyrocapsa and Globigerina bulloides at 5.3 ka suggests enhanced nutrient availability in surface waters, related to more persistent wind-induced upwelling conditions. Relatively higher winter SST in the last 3.5 ka favored the increase of Trilobatus sacculifer, likely connected to more stable surface water conditions. Over the main trends, a short-term cyclicity is registered in coccolithophore productivity during the last 8 ka. Short periods of increased productivity are in phase with Atlantic waters inflow, and more arid intervals on land. This cyclicity has been related with periods of positive North Atlantic Oscillation (NAO) circulations. Spectral analysis on coccolithophore productivity confirms the occurrence of millennial-scale cyclicity, suggesting an external (i.e. solar) and an internal (i.e. atmospheric/oceanic) forcing.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
OE
Funding Award Number
SFRH/BPD/111433/2015