Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Computational bounds on polynomial differential equations
Publication . Graça, Daniel; Buescu, Jorge; Campagnolo, Manuel
In this paper we study from a computational perspective some prop-erties of the solutions of polynomial ordinary di erential equations. We consider elementary (in the sense of Analysis) discrete-time dynam-ical systems satisfying certain criteria of robustness. We show that those systems can be simulated with elementary and robust continuous-time dynamical systems which can be expanded into fully polynomial ordinary diferential equations with coe cients in Q[ ]. This sets a computational lower bound on polynomial ODEs since the former class is large enough to include the dynamics of arbitrary Turing machines. We also apply the previous methods to show that the problem of de-termining whether the maximal interval of defnition of an initial-value problem defned with polynomial ODEs is bounded or not is in general undecidable, even if the parameters of the system are computable and comparable and if the degree of the corresponding polynomial is at most 56. Combined with earlier results on the computability of solutions of poly-nomial ODEs, one can conclude that there is from a computational point of view a close connection between these systems and Turing machines.
Effective computability of solutions of differential inclusions-the ten thousand monkeys approach
Publication . Collins, Pieter; Graça, Daniel
In this note we consider the computability of the solution of the initial- value problem for ordinary di erential equations with continuous right- hand side. We present algorithms for the computation of the solution using the \thousand monkeys" approach, in which we generate all possi- ble solution tubes, and then check which are valid. In this way, we show that the solution of a di erential equation de ned by a locally Lipschitz function is computable even if the function is not e ectively locally Lips- chitz. We also recover a result of Ruohonen, in which it is shown that if the solution is unique, then it is computable, even if the right-hand side is not locally Lipschitz. We also prove that the maximal interval of existence for the solution must be e ectively enumerable open, and give an example of a computable locally Lipschitz function which is not e ectively locally Lipschitz.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

SFRH

Funding Award Number

SFRH/BPD/39779/2007

ID