Repository logo
 
Loading...
Project Logo
Research Project

Centro de Química Estrutural

Authors

Publications

Unique stiffness-deformability features of dendrimeric silica reinforced HDPE nanocomposites obtained by an innovative route
Publication . Cecílio, Duarte M.; Cerrada, Maria L.; Pérez, Ernesto; Fernandes, Auguste; Lourenço, João P.; McKenna, Timothy F.L.; Ribeiro, M. Rosário
A set of dendrimeric silica (DS) reinforced polyethylene-based nanocomposites is prepared using a novel and straightforward in-situ catalyst supporting procedure by means of "in-situ" polymerization technique, labeled DSSA. These materials are characterized with regard to molar masses, filler dispersion, thermal stability, crystalline characteristics, thermal properties and mechanical response and then compared with an equivalent set of samples prepared using a more common method, named DS-MAO, as well as a non-reinforced HDPE reference. The mechanical performance of all these materials is discussed based on the crystalline features and molar masses of the polymeric component together with the dispersion of the DS nanofiller. The results of this study confirm the potential of the DS-SA approach as an innovative and promising technique, with resulting materials achieving superior filler dispersion and significantly higher mechanical performance compared to their DS-MAO analogues at high filler loadings, while retaining the limit stretching ability of HDPE.
Anticancer activity of rutin and its combination with ionic liquids on renal cells
Publication . Caparica, Rita; Júlio, Ana; Araújo, Maria Eduarda Machado; Baby, André Rolim; Fonte, Pedro; Costa, João Guilherme; Santos de Almeida, Tânia
The renal cell carcinoma (RCC) is the most common type of kidney cancer. Identifying novel and more effective therapies, while minimizing toxicity, continues to be fundamental in curtailing RCC. Rutin, a bioflavonoid widely found in nature, has shown promising anticancer properties, but with limited applicability due to its poor water solubility and pharmacokinetics. Thus, the potential anticancer effects of rutin toward a human renal cancer cell line (786-O), while considering its safety in Vero kidney cells, was assessed, as well as the applicability of ionic liquids (ILs) to improve drug delivery. Rutin (up to 50 µM) did not show relevant cytotoxic effects in Vero cells. However, in 786-O cells, a significant decrease in cell viability was already observed at 50 µM. Moreover, exposure to rutin caused a significant increase in the sub-G1 population of 786-O cells, reinforcing the possible anticancer activity of this biomolecule. Two choline-amino acid ILs, at non-toxic concentrations, enhanced rutin's solubility/loading while allowing the maintenance of rutin's anticancer effects. Globally, our findings suggest that rutin may have a beneficial impact against RCC and that its combination with ILs ensures that this poorly soluble drug is successfully incorporated into ILs-nanoparticles hybrid systems, allowing controlled drug delivery.
Microencapsulation of selenium by spray-drying as a tool to improve bioaccessibility in food matrix
Publication . Grenha, Ana; Guerreiro, Filipa; Lourenço, João P.; Lopes, João Almeida; Cámara-Martos, Fernando
Se in the form of sodium selenite was microencapsulated by spray - drying and added to a food matrix (yogurt) to study the potential improvement of its bioaccessibility. Yogurt samples were also supplemented with Se in free salt form. Se-loaded microparticles were successfully prepared by spray-drying with production yields above 70%. The supplementation of yogurt with Se in the form of free sodium selenite had a low effect on improving the bioaccessibility of this micronutrient (1%). In turn, Se microencapsulation with mannitol or mannitol/gastro-resistant polymer (Eudragit (R)) had a strong impact on bioaccessibility results. After the gastric phase, Se bio-accessibility reached values of 21 and 40% for the microencapsulated formulations, respectively. This percentage rose to 55% at the end of intestinal phase, showing no differences between both formulations. Our results show the relevance of microencapsulation as an effective tool to improve the bioaccessibility of micronutrients when they are used in food supplementation.
Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells
Publication . Nunes, Patrique; Correia, Isabel; Cavaco, Isabel; Marques, Fernanda; Pinheiro, Teresa; Avecilla, Fernando; Pessoa, Joao Costa
(VO)-O-IV-complexes formulated as [(VO)-O-IV(OSO3)(phen)(2)] (1) (phen = 1,10-phenanthroline), [(VO)-O-IV(OSO3) (Me(2)phen)(2)] (2) (Me(2)phen = 4,7-dimethyl-1,10-phenanthroline) and [(VO)-O-IV(OSO3)(amphen)(2)] (3) (amphen = 5-amino-1,10-phenanthroline) were prepared and stability in cell incubation media evaluated. Their cytotoxicity was determined against the A2780 (ovarian), MCF7 (breast) and PC3 (prostate) human cancer cells at different incubation times. While at 3 and 24 h the cytotoxicity differs for complexes and corresponding free ligands, at 72 h incubation all compounds are equally active presenting low IC50 values. Upon incubation of A2780 cells with 1-3, cellular distribution of vanadium in cytosol, membranes, nucleus and cytoskeleton, indicate that the uptake of V is low, particularly for 1, and that the uptake pattern depends on the ligand. Nuclear microscopic techniques are used for imaging and elemental quantification in whole PC3 cells incubated with 1. Once complexes are added to cell culture media, they decompose, and with time most V-IV oxidizes to V-V-species. Modeling of speciation when [(VO)-O-IV(OSO3)(phen)(2)] (1) is added to cell media is presented. At lower concentrations of 1, (VO)-O-IV- and phen-containing species are mainly bound to bovine serum albumin, while at higher concentrations [(VO)-O-IV (phen)n](2+)-complexes become relevant, being predicted that the species taken up and mechanisms of action operating depend on the total concentration of complex. This study emphasizes that for these (VO)-O-IV-systems, and probably for many others involving oxidovanadium or other labile metal complexes, it is not possible to identify active species or propose mechanisms of cytotoxic action without evaluating speciation occurring in cell media.
Contamination analysis of Arctic ice samples as planetary field analogs and implications for future life-detection missions to Europa and Enceladus
Publication . Coelho, Lígia F.; Blais, Marie-Amélie; Matveev, Alex; Keller-Costa, Tina; Vincent, Warwick F.; Da Silva Costa, Rodrigo; Martins, Zita; Canário, João
Missions to detect extraterrestrial life are being designed to visit Europa and Enceladus in the next decades. The contact between the mission payload and the habitable subsurface of these satellites involves significant risk of forward contamination. The standardization of protocols to decontaminate ice cores from planetary field analogs of icy moons, and monitor the contamination in downstream analysis, has a direct application for developing clean approaches crucial to life detection missions in these satellites. Here we developed a comprehensive protocol that can be used to monitor and minimize the contamination of Arctic ice cores in processing and downstream analysis. We physically removed the exterior layers of ice cores to minimize bioburden from sampling. To monitor contamination, we constructed artificial controls and applied culture-dependent and culture-independent techniques such as 16S rRNA amplicon sequencing. We identified 13 bacterial contaminants, including a radioresistant species. This protocol decreases the contamination risk, provides quantitative and qualitative information about contamination agents, and allows validation of the results obtained. This study highlights the importance of decreasing and evaluating prokaryotic contamination in the processing of polar ice cores, including in their use as analogs of Europa and Enceladus.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDB/00100/2020

ID