Loading...
Research Project
Southern Ocean Nanoplankton Response to CO2
Funder
Authors
Publications
Coccolithophore biodiversity controls carbonate export in the Southern Ocean
Publication . Rigual Hernández, Andrés S.; Trull, Thomas W.; Nodder, Scott D.; Flores, José A.; Bostock, Helen; Abrantes, Fatima; Eriksen, Ruth S.; Sierro, Francisco J.; Davies, Diana M.; Ballegeer, Anne-Marie; Fuertes, Miguel A.; Northcote, Lisa C.
Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO3) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO3 export in the Southern Ocean is uncertain, particularly in the circumpolar subantarctic zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO3 flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative of a large portion of the subantarctic zone. We find that coccolithophores account for a major fraction of the annual CaCO3 export, with the highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although Emiliania huxleyi is an important vector for CaCO3 export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO3 flux. This observation contrasts with the generally accepted notion that high particulate inorganic carbon accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO3 production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.
Influence of environmental variability and Emiliania huxleyi ecotypes on alkenone-derived temperature reconstructions in the subantarctic Southern Ocean
Publication . Rigual-Hernández, A.S.; Sierro, F.J.; Flores, J.A.; Trull, T.W.; Rodrigues, T.; Martrat, B.; Sikes, E.L.; Nodder, S.D.; Eriksen, R.S.; Davies, D.; Bravo, N.; Sánchez-Santos, J.M.; Abrantes, F.
Long-chain unsaturated alkenones produced by haptophyte algae are widely used as paleotemperature indicators. The unsaturation relationship to temperature is linear at mid-latitudes, however, non-linear responses detected in subpolar regions of both hemispheres have suggested complicating factors in these environments. To assess the influence of biotic and abiotic factors in alkenone production and preservation in the Subantarctic Zone, alkenone fluxes were quantified in three vertically-moored sediment traps deployed at the SOTS observatory (140°E, 47°S) during a year.
Alkenone fluxes were compared with coccolithophore assemblages, satellite measurements and surface-water properties obtained by sensors at SOTS. Alkenone-based temperature reconstructions generally mirrored the seasonal variations of SSTs, except for late winter when significant deviations were observed (3–10 °C). Annual flux-weighted averages in the 3800 m trap returned alkenone-derived temperatures ~1.5 °C warmer than those derived from the 1000 m trap, a distortion attributed to surface production and signal preservation during its transit through the water column. Notably, changes in the relative abundance of E. huxleyi var. huxleyi were positively correlated with temperature deviations between the alkenone-derived temperatures and in situ SSTs (r = 0.6 and 0.7 at 1000 and
2000 m, respectively), while E. huxleyi var. aurorae, displayed an opposite trend. Our results suggest that E. huxleyi
var. aurorae produces a higher proportion of C37:3 relative to C37:2 compared to its counterparts. Therefore, the dom inance of var. aurorae south of the Subtropical Front could be at least partially responsible for the less accurate
alkenone-based SST reconstructions in the Southern Ocean using global calibrations. However, the observed correla tions were largely influenced by the samples collected during winter, a period characterized by low particle fluxes and slow sinking rates. Thus, it is likely that other factors such as selective degradation of the most unsaturated alkenones could also account for the deviations of the alkenone paleothermometer.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
European Commission
Funding programme
H2020
Funding Award Number
748690