Repository logo
 
Publication

Experimental characterisation of the periodic thermal properties of walls using artificial intelligence

dc.contributor.authorBienvenido-Huertas, David
dc.contributor.authorRubio-Bellido, Carlos
dc.contributor.authorSolis-Guzman, Jaime
dc.contributor.authorOliveira, Miguel José
dc.date.accessioned2021-06-24T11:35:25Z
dc.date.available2021-06-24T11:35:25Z
dc.date.issued2020-07
dc.description.abstractThe energy performance of a building is affected by the periodic thermal properties of the walls, and reliable methods of characterising these are therefore required. However, the methods that are currently available involve theoretical calculations that make it difficult to assess the condition of existing walls. In this study, the characterisation of the periodic thermal variables of walls using experimental measurements and methods as described in ISO 13786 was assessed. Two regression algorithms (multilayer perceptron [MLP] and random forest [RF]) and input variables obtained using two experimental methods (the heat flow meter and the thermometric method) were used. The methods gave accurate estimates, and better statistical parameter values were given by the RF models than the multilayer perceptron models. For all the periodic thermal variables, the percentage differences between the actual values and the estimated values given by the RF algorithm were low. The heat flow meter and the thermometric methods can both be used to characterise accurately the periodic thermal properties of walls using the RF algorithm. The variables specific to each method, including the wall thickness and the date of construction, affected the accuracies of the models most strongly. (C) 2020 Elsevier Ltd. All rights reserved.
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.energy.2020.117871
dc.identifier.issn0360-5442
dc.identifier.urihttp://hdl.handle.net/10400.1/16434
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.subjectPeriodic thermal transmittance
dc.subjectEnergy demand
dc.subjectISO 13786
dc.subjectMultilayer perceptron
dc.subjectRandom forests
dc.subjectIn-situ
dc.subject.otherThermodynamics; Energy & Fuels
dc.titleExperimental characterisation of the periodic thermal properties of walls using artificial intelligence
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage117871
oaire.citation.titleEnergy
oaire.citation.volume203
person.familyNameOliveira
person.givenNameMiguel José
person.identifier.ciencia-idE012-0342-0756
person.identifier.orcid0000-0002-3042-0802
person.identifier.ridT-2877-2017
person.identifier.scopus-author-id57205447350
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication5a5c455d-c0d4-4ba6-a582-45710631c42d
relation.isAuthorOfPublication.latestForDiscovery5a5c455d-c0d4-4ba6-a582-45710631c42d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
16434 - main.pdf
Size:
4.62 MB
Format:
Adobe Portable Document Format

Collections